{"title":"柴油中添加十六烷改进剂对发动机性能和排放的影响分析","authors":"S. Şi̇mşek, S. Uslu","doi":"10.18245/IJAET.798221","DOIUrl":null,"url":null,"abstract":"The high cetane number of the fuel used in diesel engines is extremely important as it provides some improvements in combustion in the cylinder. Therefore, the addition of cetane improver to diesel fuel has been highly preferred in recent years. In this study, the effects of 2-ethylhexyl nitrate (EHN) addition, a cetane improver, on compression ignition engine performance and emissions were analyzed at various engine loads. Four different fuels were used in the experiments as 100% diesel (D100), 99% diesel + 1% EHN (D99EHN1), 98% diesel + 2% EHN (D99EHN2) and 97% diesel + 3% EHN (D99EHN3). The results obtained from the experiments showed that the addition of 2-EHN positively affected the brake thermal efficiency (BTHE), hydrocarbon (HC) and carbon monoxide (CO) values, while the brake specific fuel consumption (BSFC), nitrogen oxide (NOx) and smoke emission levels were negatively affected. With high engine load, 2-EHN supplement marginally rises NOx emissions but significantly declines HC and CO emissions. EHN addition had small impacts on BSFC. Compared to D100 fuel, the highest BTHE value was obtained by D99EHN2 fuel, with an increase of 11.57% at 3000-Watt load value. With the D97EHN3 fuel, compared to diesel, HC emission decreased 60.61%, while CO emission decreased 31.25%. The results show that the 2-EHN cetane improver can be used successfully in a diesel engine.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"1 1","pages":"26-32"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Analysis of the effects of cetane improver addition to diesel on engine performance and emissions\",\"authors\":\"S. Şi̇mşek, S. Uslu\",\"doi\":\"10.18245/IJAET.798221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high cetane number of the fuel used in diesel engines is extremely important as it provides some improvements in combustion in the cylinder. Therefore, the addition of cetane improver to diesel fuel has been highly preferred in recent years. In this study, the effects of 2-ethylhexyl nitrate (EHN) addition, a cetane improver, on compression ignition engine performance and emissions were analyzed at various engine loads. Four different fuels were used in the experiments as 100% diesel (D100), 99% diesel + 1% EHN (D99EHN1), 98% diesel + 2% EHN (D99EHN2) and 97% diesel + 3% EHN (D99EHN3). The results obtained from the experiments showed that the addition of 2-EHN positively affected the brake thermal efficiency (BTHE), hydrocarbon (HC) and carbon monoxide (CO) values, while the brake specific fuel consumption (BSFC), nitrogen oxide (NOx) and smoke emission levels were negatively affected. With high engine load, 2-EHN supplement marginally rises NOx emissions but significantly declines HC and CO emissions. EHN addition had small impacts on BSFC. Compared to D100 fuel, the highest BTHE value was obtained by D99EHN2 fuel, with an increase of 11.57% at 3000-Watt load value. With the D97EHN3 fuel, compared to diesel, HC emission decreased 60.61%, while CO emission decreased 31.25%. The results show that the 2-EHN cetane improver can be used successfully in a diesel engine.\",\"PeriodicalId\":13841,\"journal\":{\"name\":\"International Journal of Automotive Engineering and Technologies\",\"volume\":\"1 1\",\"pages\":\"26-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Engineering and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18245/IJAET.798221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Engineering and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18245/IJAET.798221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of the effects of cetane improver addition to diesel on engine performance and emissions
The high cetane number of the fuel used in diesel engines is extremely important as it provides some improvements in combustion in the cylinder. Therefore, the addition of cetane improver to diesel fuel has been highly preferred in recent years. In this study, the effects of 2-ethylhexyl nitrate (EHN) addition, a cetane improver, on compression ignition engine performance and emissions were analyzed at various engine loads. Four different fuels were used in the experiments as 100% diesel (D100), 99% diesel + 1% EHN (D99EHN1), 98% diesel + 2% EHN (D99EHN2) and 97% diesel + 3% EHN (D99EHN3). The results obtained from the experiments showed that the addition of 2-EHN positively affected the brake thermal efficiency (BTHE), hydrocarbon (HC) and carbon monoxide (CO) values, while the brake specific fuel consumption (BSFC), nitrogen oxide (NOx) and smoke emission levels were negatively affected. With high engine load, 2-EHN supplement marginally rises NOx emissions but significantly declines HC and CO emissions. EHN addition had small impacts on BSFC. Compared to D100 fuel, the highest BTHE value was obtained by D99EHN2 fuel, with an increase of 11.57% at 3000-Watt load value. With the D97EHN3 fuel, compared to diesel, HC emission decreased 60.61%, while CO emission decreased 31.25%. The results show that the 2-EHN cetane improver can be used successfully in a diesel engine.