M. L. Budlayan, J. Patricio, Susan D. Arco, R. Capangpangan
{"title":"等离子体和金属氧化物纳米结构的杀病毒潜力综述","authors":"M. L. Budlayan, J. Patricio, Susan D. Arco, R. Capangpangan","doi":"10.1109/NAP51477.2020.9309578","DOIUrl":null,"url":null,"abstract":"Viral diseases resulting to global pandemics occurring through the years have extremely affected the human population and global economies. With the rise of novel pathogenic viruses and resistance of the known ones to conventional drugs and medications, exploration of new materials with antiviral properties has become an expanding interest notjust in the field of biomedicine but also in materials science, particularly in nanotechnology. The unique physicochemical properties of nanostructures derived from gold and silver, and metal oxides have attracted considerable attention as novel antiviral nanomaterials. In this paper, we review the antiviral potential of plasmonic gold and silver, and metal oxide nanostructures against known human pathogenic viruses such as herpes, hepatitis, dengue, influenza, measles, human immunodeficiency virus, transmissible gastroenteritis virus and other viruses. Experimental investigations revealed the promising potential of both plasmonic and metal oxide nanostructures as antiviral agents. The mechanisms of antiviral action were found to vary for different nanomaterials and its target virus while some mechanisms remained unclear. The promising yet undeterministic antiviral potential of these nanomaterials paved a more interesting platform for further research and biomedical exploration.","PeriodicalId":6770,"journal":{"name":"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"15 1","pages":"02BA07-1-02BA07-8"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Viricidal Potential of Plasmonic and Metal Oxide Nanostructures: A Review\",\"authors\":\"M. L. Budlayan, J. Patricio, Susan D. Arco, R. Capangpangan\",\"doi\":\"10.1109/NAP51477.2020.9309578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viral diseases resulting to global pandemics occurring through the years have extremely affected the human population and global economies. With the rise of novel pathogenic viruses and resistance of the known ones to conventional drugs and medications, exploration of new materials with antiviral properties has become an expanding interest notjust in the field of biomedicine but also in materials science, particularly in nanotechnology. The unique physicochemical properties of nanostructures derived from gold and silver, and metal oxides have attracted considerable attention as novel antiviral nanomaterials. In this paper, we review the antiviral potential of plasmonic gold and silver, and metal oxide nanostructures against known human pathogenic viruses such as herpes, hepatitis, dengue, influenza, measles, human immunodeficiency virus, transmissible gastroenteritis virus and other viruses. Experimental investigations revealed the promising potential of both plasmonic and metal oxide nanostructures as antiviral agents. The mechanisms of antiviral action were found to vary for different nanomaterials and its target virus while some mechanisms remained unclear. The promising yet undeterministic antiviral potential of these nanomaterials paved a more interesting platform for further research and biomedical exploration.\",\"PeriodicalId\":6770,\"journal\":{\"name\":\"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)\",\"volume\":\"15 1\",\"pages\":\"02BA07-1-02BA07-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAP51477.2020.9309578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51477.2020.9309578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Viricidal Potential of Plasmonic and Metal Oxide Nanostructures: A Review
Viral diseases resulting to global pandemics occurring through the years have extremely affected the human population and global economies. With the rise of novel pathogenic viruses and resistance of the known ones to conventional drugs and medications, exploration of new materials with antiviral properties has become an expanding interest notjust in the field of biomedicine but also in materials science, particularly in nanotechnology. The unique physicochemical properties of nanostructures derived from gold and silver, and metal oxides have attracted considerable attention as novel antiviral nanomaterials. In this paper, we review the antiviral potential of plasmonic gold and silver, and metal oxide nanostructures against known human pathogenic viruses such as herpes, hepatitis, dengue, influenza, measles, human immunodeficiency virus, transmissible gastroenteritis virus and other viruses. Experimental investigations revealed the promising potential of both plasmonic and metal oxide nanostructures as antiviral agents. The mechanisms of antiviral action were found to vary for different nanomaterials and its target virus while some mechanisms remained unclear. The promising yet undeterministic antiviral potential of these nanomaterials paved a more interesting platform for further research and biomedical exploration.