增材制造马氏体时效钢外围铣削的切削力

Shoichi Tamura, A. Ezura, T. Matsumura
{"title":"增材制造马氏体时效钢外围铣削的切削力","authors":"Shoichi Tamura, A. Ezura, T. Matsumura","doi":"10.20965/ijat.2022.p0897","DOIUrl":null,"url":null,"abstract":"Additively manufactured parts have recently been applied to products in aerospace, automobile, and tool industries in terms of design flexibility and material consumption with mechanical strength. Because the surfaces of additively manufactured parts are coarse, milling is conducted as a post-process to achieve fine surfaces within the specified tolerance. However, the microstructures and the mechanical properties of additively manufactured metals differ from those of wrought metals. Therefore, the cutting characteristics should be understood to determine the appropriate cutting parameters. The paper studies the cutting process in peripheral milling of additively manufactured maraging steel in a cutting model. The cutting force, the surface finish, the chip morphology, and the tool wear were evaluated through cutting tests. Although the hardness of the additively manufactured workpiece was higher than that of the wrought workpiece, the maximum cutting forces were approximately the same. An energy-based force model was applied to discuss the cutting force characteristics in terms of the shear area and the shear stress on the shear plane. In milling of additively manufactured workpiece, the shear stress on the shear plane becomes larger than that of the wrought workpiece. However, the shear plane length is short at a large shear angle. Therefore, the cutting force does not significantly increase. The typical change in the cutting force of the additively manufactured workpiece is also compared with that of the wrought workpiece in terms of the cutting model. The chip flow directions, then, are analyzed in the cutting force model. The chips of the additively manufactured workpiece flow more in the radial direction than those of the wrought workpiece.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"53 5 1","pages":"897-905"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cutting Force in Peripheral Milling of Additively Manufactured Maraging Steel\",\"authors\":\"Shoichi Tamura, A. Ezura, T. Matsumura\",\"doi\":\"10.20965/ijat.2022.p0897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additively manufactured parts have recently been applied to products in aerospace, automobile, and tool industries in terms of design flexibility and material consumption with mechanical strength. Because the surfaces of additively manufactured parts are coarse, milling is conducted as a post-process to achieve fine surfaces within the specified tolerance. However, the microstructures and the mechanical properties of additively manufactured metals differ from those of wrought metals. Therefore, the cutting characteristics should be understood to determine the appropriate cutting parameters. The paper studies the cutting process in peripheral milling of additively manufactured maraging steel in a cutting model. The cutting force, the surface finish, the chip morphology, and the tool wear were evaluated through cutting tests. Although the hardness of the additively manufactured workpiece was higher than that of the wrought workpiece, the maximum cutting forces were approximately the same. An energy-based force model was applied to discuss the cutting force characteristics in terms of the shear area and the shear stress on the shear plane. In milling of additively manufactured workpiece, the shear stress on the shear plane becomes larger than that of the wrought workpiece. However, the shear plane length is short at a large shear angle. Therefore, the cutting force does not significantly increase. The typical change in the cutting force of the additively manufactured workpiece is also compared with that of the wrought workpiece in terms of the cutting model. The chip flow directions, then, are analyzed in the cutting force model. The chips of the additively manufactured workpiece flow more in the radial direction than those of the wrought workpiece.\",\"PeriodicalId\":13583,\"journal\":{\"name\":\"Int. J. Autom. Technol.\",\"volume\":\"53 5 1\",\"pages\":\"897-905\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Autom. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2022.p0897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2022.p0897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

增材制造零件在设计灵活性和材料消耗与机械强度方面,近年来已应用于航空航天、汽车和工具行业的产品。由于增材制造的零件表面粗糙,铣削作为后处理进行,以获得在规定公差范围内的精细表面。然而,增材制造金属的显微组织和力学性能与锻造金属不同。因此,应了解切削特性,以确定合适的切削参数。采用切削模型研究了增材马氏体时效钢的外铣削加工过程。通过切削试验对切削力、表面光洁度、切屑形貌和刀具磨损进行了评价。增材加工后的工件硬度高于锻造后的工件,但最大切削力基本相同。采用基于能量的剪切力模型,从剪切面积和剪切面上的剪切应力两方面讨论了切削力的特性。在铣削增材加工工件时,剪切平面上的剪应力比锻件上的剪应力大。但在剪切角较大时,剪切面长度较短。因此,切削力不会明显增加。根据切削模型,比较了增材加工工件与锻造工件切削力的典型变化。然后,在切削力模型中分析了切屑的流动方向。增材加工工件的切屑比锻造工件的切屑更偏向径向流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cutting Force in Peripheral Milling of Additively Manufactured Maraging Steel
Additively manufactured parts have recently been applied to products in aerospace, automobile, and tool industries in terms of design flexibility and material consumption with mechanical strength. Because the surfaces of additively manufactured parts are coarse, milling is conducted as a post-process to achieve fine surfaces within the specified tolerance. However, the microstructures and the mechanical properties of additively manufactured metals differ from those of wrought metals. Therefore, the cutting characteristics should be understood to determine the appropriate cutting parameters. The paper studies the cutting process in peripheral milling of additively manufactured maraging steel in a cutting model. The cutting force, the surface finish, the chip morphology, and the tool wear were evaluated through cutting tests. Although the hardness of the additively manufactured workpiece was higher than that of the wrought workpiece, the maximum cutting forces were approximately the same. An energy-based force model was applied to discuss the cutting force characteristics in terms of the shear area and the shear stress on the shear plane. In milling of additively manufactured workpiece, the shear stress on the shear plane becomes larger than that of the wrought workpiece. However, the shear plane length is short at a large shear angle. Therefore, the cutting force does not significantly increase. The typical change in the cutting force of the additively manufactured workpiece is also compared with that of the wrought workpiece in terms of the cutting model. The chip flow directions, then, are analyzed in the cutting force model. The chips of the additively manufactured workpiece flow more in the radial direction than those of the wrought workpiece.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信