算术图G=Vn的互补连通支配和连通支配数

Q4 Mathematics
L. M. Jenitha, M. K. A. Jebitha
{"title":"算术图G=Vn的互补连通支配和连通支配数","authors":"L. M. Jenitha, M. K. A. Jebitha","doi":"10.28919/jmcs/6977","DOIUrl":null,"url":null,"abstract":"A subset S of V is said to be a complementary connected dominating set if every vertex not in S is adjacent to some vertex in S and the sub graph induced by V − S is connected. The complementary connected domination number of the graph is denoted by γccd(G) and is defined as the minimum number of vertices which form a ccd-set. A set S of vertices in a graph G is a connectivity dominating set if every vertex not in S is adjacent to some vertex in S and the sub graph induced by V −S is not connected. The connectivity domination number κγ(G) is the minimum size of such set.","PeriodicalId":36607,"journal":{"name":"Journal of Mathematical and Computational Science","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complementary connected domination and connectivity domination number of an arithmetic graph G=Vn\",\"authors\":\"L. M. Jenitha, M. K. A. Jebitha\",\"doi\":\"10.28919/jmcs/6977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subset S of V is said to be a complementary connected dominating set if every vertex not in S is adjacent to some vertex in S and the sub graph induced by V − S is connected. The complementary connected domination number of the graph is denoted by γccd(G) and is defined as the minimum number of vertices which form a ccd-set. A set S of vertices in a graph G is a connectivity dominating set if every vertex not in S is adjacent to some vertex in S and the sub graph induced by V −S is not connected. The connectivity domination number κγ(G) is the minimum size of such set.\",\"PeriodicalId\":36607,\"journal\":{\"name\":\"Journal of Mathematical and Computational Science\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/jmcs/6977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jmcs/6977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

如果不在S中的每个顶点都与S中的某个顶点相邻,并且由V - S引出的子图是连通的,则称V的子集S是互补连通的控制集。图的互补连通支配数用γccd(G)表示,定义为构成一个ccd集的最小顶点数。如果不在S中的每个顶点与S中的某个顶点相邻,且由V - S诱导的子图不连通,则图G中的顶点集S是连通支配集。连通性支配数κγ(G)是该集合的最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complementary connected domination and connectivity domination number of an arithmetic graph G=Vn
A subset S of V is said to be a complementary connected dominating set if every vertex not in S is adjacent to some vertex in S and the sub graph induced by V − S is connected. The complementary connected domination number of the graph is denoted by γccd(G) and is defined as the minimum number of vertices which form a ccd-set. A set S of vertices in a graph G is a connectivity dominating set if every vertex not in S is adjacent to some vertex in S and the sub graph induced by V −S is not connected. The connectivity domination number κγ(G) is the minimum size of such set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
158
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信