理想位置伺服驱动教学机电装置的笛卡罗式调节器:渐近稳定性分析

G. Zepeda, R. Kelly, Carmen Monroy
{"title":"理想位置伺服驱动教学机电装置的笛卡罗式调节器:渐近稳定性分析","authors":"G. Zepeda, R. Kelly, Carmen Monroy","doi":"10.3844/ajeassp.2022.189.196","DOIUrl":null,"url":null,"abstract":": Position-servo actuators are by themselves feedback mechatronics systems modeled by Ordinary Differential Equations (ODE). From a technological point of view, position-servos are based upon an electrical motor, a shaft angular position sensor, and a dominant Proportional controller. These position servo actuators are at the core of several real-life practical and didactic mechatronics and robotics systems. The contribution of this study is the introduction of a novel position regulator in Cartesian space and the stability analysis of a real-world mechatronic system involving the following mechatronics ingredients: A position servo actuated pendulum endowed with position sensing for feedback and a novel nonlinear integral controller for direct position regulation in Cartesian space avoiding the inverse kinematics computational burden. Because of the nonlinear nature of the control system, the standard analysis tools from classic linear control cannot be utilized, thus this study invokes Lyapunov stability arguments to prove asymptotic stability and to provide an estimate of the domain of attraction.","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cartesian Regulator for an Ideal Position-Servo Actuated Didactic Mechatronic Device: Asymptotic Stability Analysis\",\"authors\":\"G. Zepeda, R. Kelly, Carmen Monroy\",\"doi\":\"10.3844/ajeassp.2022.189.196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Position-servo actuators are by themselves feedback mechatronics systems modeled by Ordinary Differential Equations (ODE). From a technological point of view, position-servos are based upon an electrical motor, a shaft angular position sensor, and a dominant Proportional controller. These position servo actuators are at the core of several real-life practical and didactic mechatronics and robotics systems. The contribution of this study is the introduction of a novel position regulator in Cartesian space and the stability analysis of a real-world mechatronic system involving the following mechatronics ingredients: A position servo actuated pendulum endowed with position sensing for feedback and a novel nonlinear integral controller for direct position regulation in Cartesian space avoiding the inverse kinematics computational burden. Because of the nonlinear nature of the control system, the standard analysis tools from classic linear control cannot be utilized, thus this study invokes Lyapunov stability arguments to prove asymptotic stability and to provide an estimate of the domain of attraction.\",\"PeriodicalId\":7425,\"journal\":{\"name\":\"American Journal of Engineering and Applied Sciences\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Engineering and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/ajeassp.2022.189.196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ajeassp.2022.189.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

位置伺服作动器本身就是用常微分方程(ODE)建模的反馈机电一体化系统。从技术的角度来看,位置伺服是基于一个电动机,一个轴角位置传感器和一个占主导地位的比例控制器。这些位置伺服执行器是几个现实生活中的实用和教学机电一体化和机器人系统的核心。本研究的贡献是在笛卡尔空间中引入了一种新的位置调节器,并对实际机电系统的稳定性进行了分析,该系统涉及以下机电一体化成分:具有位置传感反馈的位置伺服驱动摆和用于笛卡尔空间中直接位置调节的新型非线性积分控制器,避免了逆运动学计算负担。由于控制系统的非线性性质,不能利用经典线性控制的标准分析工具,因此本研究引用Lyapunov稳定性参数来证明渐近稳定性并提供吸引力域的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cartesian Regulator for an Ideal Position-Servo Actuated Didactic Mechatronic Device: Asymptotic Stability Analysis
: Position-servo actuators are by themselves feedback mechatronics systems modeled by Ordinary Differential Equations (ODE). From a technological point of view, position-servos are based upon an electrical motor, a shaft angular position sensor, and a dominant Proportional controller. These position servo actuators are at the core of several real-life practical and didactic mechatronics and robotics systems. The contribution of this study is the introduction of a novel position regulator in Cartesian space and the stability analysis of a real-world mechatronic system involving the following mechatronics ingredients: A position servo actuated pendulum endowed with position sensing for feedback and a novel nonlinear integral controller for direct position regulation in Cartesian space avoiding the inverse kinematics computational burden. Because of the nonlinear nature of the control system, the standard analysis tools from classic linear control cannot be utilized, thus this study invokes Lyapunov stability arguments to prove asymptotic stability and to provide an estimate of the domain of attraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信