气溶胶预测的卫星遥感与深度学习

Nikola S. Mirkov, Dušan S. Radivojević, I. Lazović, Uzahir R. Ramadani, Dušan P. Nikezić
{"title":"气溶胶预测的卫星遥感与深度学习","authors":"Nikola S. Mirkov, Dušan S. Radivojević, I. Lazović, Uzahir R. Ramadani, Dušan P. Nikezić","doi":"10.5937/vojtehg71-40391","DOIUrl":null,"url":null,"abstract":"Introduction/purpose: The paper presents a new state-of-the-art method that involves NASA satellite imagery with the latest deep learning model for a spatiotemporal sequence forecasting problem. Satellite-retrieved aerosol information is very useful in many fields such as PM prediction or COVID-19 transmission. The input data set was MODAL2_E_AER_OD which presents global AOT for every 8 days from Terra/MODIS. The implemented machine learning algorithm was built with ConvLSTM2D layers in Keras. The obtained results were compared with the new CNN LSTM model. Methods: Computational methods of Machine Learning, Artificial Neural Networks, Deep Learning. Results: The results show global AOT prediction obtained using satellite digital imagery as an input. Conclusion: The results show that the ConvLSTM developed model could be used for global AOT prediction, as well as for PM and COVID-19 transmission.","PeriodicalId":30576,"journal":{"name":"Vojnotehnicki Glasnik","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite remote sensing and deep learning for aerosols prediction\",\"authors\":\"Nikola S. Mirkov, Dušan S. Radivojević, I. Lazović, Uzahir R. Ramadani, Dušan P. Nikezić\",\"doi\":\"10.5937/vojtehg71-40391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction/purpose: The paper presents a new state-of-the-art method that involves NASA satellite imagery with the latest deep learning model for a spatiotemporal sequence forecasting problem. Satellite-retrieved aerosol information is very useful in many fields such as PM prediction or COVID-19 transmission. The input data set was MODAL2_E_AER_OD which presents global AOT for every 8 days from Terra/MODIS. The implemented machine learning algorithm was built with ConvLSTM2D layers in Keras. The obtained results were compared with the new CNN LSTM model. Methods: Computational methods of Machine Learning, Artificial Neural Networks, Deep Learning. Results: The results show global AOT prediction obtained using satellite digital imagery as an input. Conclusion: The results show that the ConvLSTM developed model could be used for global AOT prediction, as well as for PM and COVID-19 transmission.\",\"PeriodicalId\":30576,\"journal\":{\"name\":\"Vojnotehnicki Glasnik\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vojnotehnicki Glasnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/vojtehg71-40391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vojnotehnicki Glasnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/vojtehg71-40391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍/目的:本文提出了一种新的最先进的方法,该方法涉及NASA卫星图像和最新的深度学习模型,用于时空序列预测问题。卫星获取的气溶胶信息在PM预测或COVID-19传播等许多领域非常有用。输入数据集为MODAL2_E_AER_OD,表示Terra/MODIS每8天的全球AOT。实现的机器学习算法在Keras中使用ConvLSTM2D层构建。将得到的结果与新的CNN LSTM模型进行了比较。方法:机器学习、人工神经网络、深度学习的计算方法。结果:利用卫星数字图像作为输入,获得了全球AOT预测结果。结论:ConvLSTM建立的模型可用于全球AOT预测,也可用于PM和COVID-19传播预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Satellite remote sensing and deep learning for aerosols prediction
Introduction/purpose: The paper presents a new state-of-the-art method that involves NASA satellite imagery with the latest deep learning model for a spatiotemporal sequence forecasting problem. Satellite-retrieved aerosol information is very useful in many fields such as PM prediction or COVID-19 transmission. The input data set was MODAL2_E_AER_OD which presents global AOT for every 8 days from Terra/MODIS. The implemented machine learning algorithm was built with ConvLSTM2D layers in Keras. The obtained results were compared with the new CNN LSTM model. Methods: Computational methods of Machine Learning, Artificial Neural Networks, Deep Learning. Results: The results show global AOT prediction obtained using satellite digital imagery as an input. Conclusion: The results show that the ConvLSTM developed model could be used for global AOT prediction, as well as for PM and COVID-19 transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信