自同步打乱序列的功率谱密度

I. Fair, V. Bhargava, Qiang Wang
{"title":"自同步打乱序列的功率谱密度","authors":"I. Fair, V. Bhargava, Qiang Wang","doi":"10.1109/18.681352","DOIUrl":null,"url":null,"abstract":"We derive a closed-form expression for the power spectral density of amplitude/phase-shift keyed bit sequences randomized through self-synchronizing scrambling when the source sequence is a stationary sequence of statistically independent bits. In addition to the dependence on the symbol pulse shape, duration, and the signal space values with which symbols are represented, we show that the power spectral density is dependent only on the probability of logic ones in the source bit stream, the period of the impulse response of the scrambling shift register, and the number of logic ones in this period. Our results confirm that optimum randomization results with use of primitive scrambling polynomials and poorest randomization occurs with \"two-tap\" polynomials of the form x/sup D/+1.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"7 1","pages":"1687-1693"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the Power Spectral Density of Self-Synchronizing Scrambled Sequences\",\"authors\":\"I. Fair, V. Bhargava, Qiang Wang\",\"doi\":\"10.1109/18.681352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a closed-form expression for the power spectral density of amplitude/phase-shift keyed bit sequences randomized through self-synchronizing scrambling when the source sequence is a stationary sequence of statistically independent bits. In addition to the dependence on the symbol pulse shape, duration, and the signal space values with which symbols are represented, we show that the power spectral density is dependent only on the probability of logic ones in the source bit stream, the period of the impulse response of the scrambling shift register, and the number of logic ones in this period. Our results confirm that optimum randomization results with use of primitive scrambling polynomials and poorest randomization occurs with \\\"two-tap\\\" polynomials of the form x/sup D/+1.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"7 1\",\"pages\":\"1687-1693\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/18.681352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.681352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

当源序列是统计独立的平稳序列时,我们推导了自同步置乱随机化的幅度/相移键控比特序列的功率谱密度的封闭表达式。除了依赖于符号脉冲形状、持续时间和表示符号的信号空间值外,我们还证明了功率谱密度仅依赖于源比特流中逻辑脉冲的概率、置乱移位寄存器的脉冲响应周期以及该周期内逻辑脉冲的数量。我们的研究结果证实了使用原始置乱多项式的最佳随机化结果和使用形式为x/sup D/+1的“两拍”多项式的最差随机化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Power Spectral Density of Self-Synchronizing Scrambled Sequences
We derive a closed-form expression for the power spectral density of amplitude/phase-shift keyed bit sequences randomized through self-synchronizing scrambling when the source sequence is a stationary sequence of statistically independent bits. In addition to the dependence on the symbol pulse shape, duration, and the signal space values with which symbols are represented, we show that the power spectral density is dependent only on the probability of logic ones in the source bit stream, the period of the impulse response of the scrambling shift register, and the number of logic ones in this period. Our results confirm that optimum randomization results with use of primitive scrambling polynomials and poorest randomization occurs with "two-tap" polynomials of the form x/sup D/+1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信