非参数回归鲁棒估计的比较

Ali Fadhil Abduljabbar, Afrah Mohammed Kadhim
{"title":"非参数回归鲁棒估计的比较","authors":"Ali Fadhil Abduljabbar, Afrah Mohammed Kadhim","doi":"10.25130/tjps.v28i1.1271","DOIUrl":null,"url":null,"abstract":"In order to get rid of or reduce the abnormal values ​​of some phenomena that may be the reason for not obtaining the desired results. This makes us to get conclusions far from reality for the phenomenon we are studying. That the traditional nonparametric estimators are very sensitive to anomalous values, which prompted us to use the fortified estimators because they are not much affected by the anomalous values, as well as the nonparametric regression because it does not depend on the previous determinants or assumptions, but it depends directly and fundamentally on the data.","PeriodicalId":23142,"journal":{"name":"Tikrit Journal of Pure Science","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison the Robust Estimators Nonparametric of Nonparametric Regressions\",\"authors\":\"Ali Fadhil Abduljabbar, Afrah Mohammed Kadhim\",\"doi\":\"10.25130/tjps.v28i1.1271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to get rid of or reduce the abnormal values ​​of some phenomena that may be the reason for not obtaining the desired results. This makes us to get conclusions far from reality for the phenomenon we are studying. That the traditional nonparametric estimators are very sensitive to anomalous values, which prompted us to use the fortified estimators because they are not much affected by the anomalous values, as well as the nonparametric regression because it does not depend on the previous determinants or assumptions, but it depends directly and fundamentally on the data.\",\"PeriodicalId\":23142,\"journal\":{\"name\":\"Tikrit Journal of Pure Science\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tikrit Journal of Pure Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25130/tjps.v28i1.1271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Pure Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25130/tjps.v28i1.1271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了摆脱或减少一些异常值的现象,可能是无法获得预期结果的原因。这使得我们对我们正在研究的现象得出与现实相去甚远的结论。传统的非参数估计量对异常值非常敏感,这促使我们使用强化估计量,因为它们不受异常值的太大影响,以及非参数回归,因为它不依赖于先前的决定因素或假设,而是直接和根本地依赖于数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison the Robust Estimators Nonparametric of Nonparametric Regressions
In order to get rid of or reduce the abnormal values ​​of some phenomena that may be the reason for not obtaining the desired results. This makes us to get conclusions far from reality for the phenomenon we are studying. That the traditional nonparametric estimators are very sensitive to anomalous values, which prompted us to use the fortified estimators because they are not much affected by the anomalous values, as well as the nonparametric regression because it does not depend on the previous determinants or assumptions, but it depends directly and fundamentally on the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信