{"title":"laumonite水化/脱水对蚀变花岗闪长岩溶胀变形及湖持久性的影响","authors":"Junsong Yan, Jun-hui Shen, Kaizhen Zhang, Jianjun Xu, Wei-feng Duan, Ri-chang Yang","doi":"10.2113/EEG-D-19-00004","DOIUrl":null,"url":null,"abstract":"\n The mineral laumontite can undergo hydration/dehydration reactions at room temperature. The hydration/dehydration produces a 3 to 6 percent volume change in the unit cell. The effects of laumontite hydration/dehydration on swelling and slake durability were investigated using altered granodiorite containing laumontite from the dam foundation of Yangfanggou Hydro Power Station, Sichuan, China. The occurrence of laumontite in altered rocks was first determined by petrological analysis. Typical samples were then collected for laboratory X-ray diffraction (XRD) analyses, free swelling tests, and slake durability index (SDI) tests. The test results were analyzed to determine the quantitative relationships between laumontite content, maximum axial strain, and slake durability index. We found that hydration of laumontite led to rock swelling. As laumontite content increased, maximum axial strain increased linearly; if water penetrated the rock quickly, swelling occurred over a short period. The hydration/dehydration of laumontite decreased slake durability of the rock; the SDI decreased approximately linearly as laumontite content increased.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Laumontite Hydration/Dehydration on Swelling Deformation and Slake Durability of Altered Granodiorite\",\"authors\":\"Junsong Yan, Jun-hui Shen, Kaizhen Zhang, Jianjun Xu, Wei-feng Duan, Ri-chang Yang\",\"doi\":\"10.2113/EEG-D-19-00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The mineral laumontite can undergo hydration/dehydration reactions at room temperature. The hydration/dehydration produces a 3 to 6 percent volume change in the unit cell. The effects of laumontite hydration/dehydration on swelling and slake durability were investigated using altered granodiorite containing laumontite from the dam foundation of Yangfanggou Hydro Power Station, Sichuan, China. The occurrence of laumontite in altered rocks was first determined by petrological analysis. Typical samples were then collected for laboratory X-ray diffraction (XRD) analyses, free swelling tests, and slake durability index (SDI) tests. The test results were analyzed to determine the quantitative relationships between laumontite content, maximum axial strain, and slake durability index. We found that hydration of laumontite led to rock swelling. As laumontite content increased, maximum axial strain increased linearly; if water penetrated the rock quickly, swelling occurred over a short period. The hydration/dehydration of laumontite decreased slake durability of the rock; the SDI decreased approximately linearly as laumontite content increased.\",\"PeriodicalId\":50518,\"journal\":{\"name\":\"Environmental & Engineering Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental & Engineering Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/EEG-D-19-00004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental & Engineering Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/EEG-D-19-00004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effects of Laumontite Hydration/Dehydration on Swelling Deformation and Slake Durability of Altered Granodiorite
The mineral laumontite can undergo hydration/dehydration reactions at room temperature. The hydration/dehydration produces a 3 to 6 percent volume change in the unit cell. The effects of laumontite hydration/dehydration on swelling and slake durability were investigated using altered granodiorite containing laumontite from the dam foundation of Yangfanggou Hydro Power Station, Sichuan, China. The occurrence of laumontite in altered rocks was first determined by petrological analysis. Typical samples were then collected for laboratory X-ray diffraction (XRD) analyses, free swelling tests, and slake durability index (SDI) tests. The test results were analyzed to determine the quantitative relationships between laumontite content, maximum axial strain, and slake durability index. We found that hydration of laumontite led to rock swelling. As laumontite content increased, maximum axial strain increased linearly; if water penetrated the rock quickly, swelling occurred over a short period. The hydration/dehydration of laumontite decreased slake durability of the rock; the SDI decreased approximately linearly as laumontite content increased.
期刊介绍:
The Environmental & Engineering Geoscience Journal publishes peer-reviewed manuscripts that address issues relating to the interaction of people with hydrologic and geologic systems. Theoretical and applied contributions are appropriate, and the primary criteria for acceptance are scientific and technical merit.