Lars Dannecker, Philipp J. Rösch, Ulrike Fischer, Gordon Gaumnitz, Wolfgang Lehner, Gregor Hackenbroich
{"title":"pEDM:智能能源分析的在线预测","authors":"Lars Dannecker, Philipp J. Rösch, Ulrike Fischer, Gordon Gaumnitz, Wolfgang Lehner, Gregor Hackenbroich","doi":"10.1145/2505515.2505588","DOIUrl":null,"url":null,"abstract":"Continuous balancing of energy demand and supply is a fundamental prerequisite for the stability of energy grids and requires accurate forecasts of electricity consumption and production at any point in time. Today's Energy Data Management (EDM) systems already provide accurate predictions, but typically employ a very time-consuming and inflexible forecasting process. However, emerging trends such as intra-day trading and an increasing share of renewable energy sources need a higher forecasting efficiency. Additionally, the wide variety of applications in the energy domain pose different requirements with respect to runtime and accuracy and thus, require flexible control of the forecasting process. To solve this issue, we introduce our novel online forecasting process as part of our EDM system called pEDM. The online forecasting process rapidly provides forecasting results and iteratively refines them over time. Thus, we avoid long calculation times and allow applications to adapt the process to their needs. Our evaluation shows that our online forecasting process offers a very efficient and flexible way of providing forecasts to the requesting applications.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"pEDM: online-forecasting for smart energy analytics\",\"authors\":\"Lars Dannecker, Philipp J. Rösch, Ulrike Fischer, Gordon Gaumnitz, Wolfgang Lehner, Gregor Hackenbroich\",\"doi\":\"10.1145/2505515.2505588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous balancing of energy demand and supply is a fundamental prerequisite for the stability of energy grids and requires accurate forecasts of electricity consumption and production at any point in time. Today's Energy Data Management (EDM) systems already provide accurate predictions, but typically employ a very time-consuming and inflexible forecasting process. However, emerging trends such as intra-day trading and an increasing share of renewable energy sources need a higher forecasting efficiency. Additionally, the wide variety of applications in the energy domain pose different requirements with respect to runtime and accuracy and thus, require flexible control of the forecasting process. To solve this issue, we introduce our novel online forecasting process as part of our EDM system called pEDM. The online forecasting process rapidly provides forecasting results and iteratively refines them over time. Thus, we avoid long calculation times and allow applications to adapt the process to their needs. Our evaluation shows that our online forecasting process offers a very efficient and flexible way of providing forecasts to the requesting applications.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
pEDM: online-forecasting for smart energy analytics
Continuous balancing of energy demand and supply is a fundamental prerequisite for the stability of energy grids and requires accurate forecasts of electricity consumption and production at any point in time. Today's Energy Data Management (EDM) systems already provide accurate predictions, but typically employ a very time-consuming and inflexible forecasting process. However, emerging trends such as intra-day trading and an increasing share of renewable energy sources need a higher forecasting efficiency. Additionally, the wide variety of applications in the energy domain pose different requirements with respect to runtime and accuracy and thus, require flexible control of the forecasting process. To solve this issue, we introduce our novel online forecasting process as part of our EDM system called pEDM. The online forecasting process rapidly provides forecasting results and iteratively refines them over time. Thus, we avoid long calculation times and allow applications to adapt the process to their needs. Our evaluation shows that our online forecasting process offers a very efficient and flexible way of providing forecasts to the requesting applications.