推断口语中的语言结构

M. Woszczyna, A. Waibel
{"title":"推断口语中的语言结构","authors":"M. Woszczyna, A. Waibel","doi":"10.21437/ICSLP.1994-226","DOIUrl":null,"url":null,"abstract":"We demonstrate the applications of Markov Chains and HMMs to modeling of the underlying structure in spontaneous spoken language. Experiments with supervised training cover the detection of the current dialog state and identi cation of the speech act as used by the speech translation component in our JANUS Speech-to-Speech Translation System. HMM training with hidden states is used to uncover other levels of structure in the task. The possible use of the model for perplexity reduction in a continuous speech recognition system is also demonstrated. To achieve improvement over a state independent bigram language model, great care must be taken to keep the number of model parameters small in the face of limited amounts of training data from transcribed spontaneous speech.","PeriodicalId":90685,"journal":{"name":"Proceedings : ICSLP. International Conference on Spoken Language Processing","volume":"15 1","pages":"847-850"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Inferring linguistic structure in spoken language\",\"authors\":\"M. Woszczyna, A. Waibel\",\"doi\":\"10.21437/ICSLP.1994-226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the applications of Markov Chains and HMMs to modeling of the underlying structure in spontaneous spoken language. Experiments with supervised training cover the detection of the current dialog state and identi cation of the speech act as used by the speech translation component in our JANUS Speech-to-Speech Translation System. HMM training with hidden states is used to uncover other levels of structure in the task. The possible use of the model for perplexity reduction in a continuous speech recognition system is also demonstrated. To achieve improvement over a state independent bigram language model, great care must be taken to keep the number of model parameters small in the face of limited amounts of training data from transcribed spontaneous speech.\",\"PeriodicalId\":90685,\"journal\":{\"name\":\"Proceedings : ICSLP. International Conference on Spoken Language Processing\",\"volume\":\"15 1\",\"pages\":\"847-850\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings : ICSLP. International Conference on Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/ICSLP.1994-226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : ICSLP. International Conference on Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1994-226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

我们展示了马尔可夫链和hmm在自发口语基础结构建模中的应用。有监督训练的实验涵盖了当前对话状态的检测和语音行为的识别,这是我们的JANUS语音到语音翻译系统中语音翻译组件所使用的。隐状态HMM训练用于揭示任务中其他层次的结构。还演示了该模型在连续语音识别系统中减少困惑的可能用途。为了实现对状态无关的二元语言模型的改进,面对来自转录的自发语音的有限数量的训练数据,必须非常小心地保持模型参数的数量少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring linguistic structure in spoken language
We demonstrate the applications of Markov Chains and HMMs to modeling of the underlying structure in spontaneous spoken language. Experiments with supervised training cover the detection of the current dialog state and identi cation of the speech act as used by the speech translation component in our JANUS Speech-to-Speech Translation System. HMM training with hidden states is used to uncover other levels of structure in the task. The possible use of the model for perplexity reduction in a continuous speech recognition system is also demonstrated. To achieve improvement over a state independent bigram language model, great care must be taken to keep the number of model parameters small in the face of limited amounts of training data from transcribed spontaneous speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信