多相流的基于相场的晶格玻尔兹曼方法综述

Q1 Physics and Astronomy
Huili Wang, Xiaolei Yuan, H. Liang, Z. Chai, B. Shi
{"title":"多相流的基于相场的晶格玻尔兹曼方法综述","authors":"Huili Wang, Xiaolei Yuan, H. Liang, Z. Chai, B. Shi","doi":"10.26804/capi.2019.03.01","DOIUrl":null,"url":null,"abstract":"In this paper, we present a brief overview of the phase-field-based lattice Boltzmann method (LBM) that is a distinct and efficient numerical algorithm for multiphase flow problems. We first give an introduction to the mathematical theory of phase-field models for multiphase flows, and then present some recent progress on the LBM for the phase-field models which are composed of the classic Navier-Stokes equations and the Cahn-Hilliard or Allen-Cahn equation. Finally, some applications of the phase-field-based LBM are also discussed. Cited as : Wang, H., Yuan, X., Liang, H., Chai, Z., Shi, B. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows. Capillarity, 2019, 2(3): 33-52, doi: 10.26804/capi.2019.03.01.","PeriodicalId":34047,"journal":{"name":"Capillarity","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"A brief review of the phase-field-based lattice Boltzmann method for multiphase flows\",\"authors\":\"Huili Wang, Xiaolei Yuan, H. Liang, Z. Chai, B. Shi\",\"doi\":\"10.26804/capi.2019.03.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a brief overview of the phase-field-based lattice Boltzmann method (LBM) that is a distinct and efficient numerical algorithm for multiphase flow problems. We first give an introduction to the mathematical theory of phase-field models for multiphase flows, and then present some recent progress on the LBM for the phase-field models which are composed of the classic Navier-Stokes equations and the Cahn-Hilliard or Allen-Cahn equation. Finally, some applications of the phase-field-based LBM are also discussed. Cited as : Wang, H., Yuan, X., Liang, H., Chai, Z., Shi, B. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows. Capillarity, 2019, 2(3): 33-52, doi: 10.26804/capi.2019.03.01.\",\"PeriodicalId\":34047,\"journal\":{\"name\":\"Capillarity\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Capillarity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26804/capi.2019.03.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Capillarity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26804/capi.2019.03.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 101

摘要

本文简要介绍了基于相场的晶格玻尔兹曼方法(LBM),这是一种独特而有效的多相流问题的数值算法。本文首先介绍了多相流相场模型的数学理论,然后介绍了由经典的Navier-Stokes方程和Cahn-Hilliard或Allen-Cahn方程组成的相场模型的LBM的一些最新进展。最后,讨论了基于相场的LBM的一些应用。引用本文:王辉,袁翔,梁辉,柴志强,石斌。多相流基于相场的晶格玻尔兹曼方法综述。毛细管学,2019,2(3):33-52,doi: 10.26804/capi.2019.03.01。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A brief review of the phase-field-based lattice Boltzmann method for multiphase flows
In this paper, we present a brief overview of the phase-field-based lattice Boltzmann method (LBM) that is a distinct and efficient numerical algorithm for multiphase flow problems. We first give an introduction to the mathematical theory of phase-field models for multiphase flows, and then present some recent progress on the LBM for the phase-field models which are composed of the classic Navier-Stokes equations and the Cahn-Hilliard or Allen-Cahn equation. Finally, some applications of the phase-field-based LBM are also discussed. Cited as : Wang, H., Yuan, X., Liang, H., Chai, Z., Shi, B. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows. Capillarity, 2019, 2(3): 33-52, doi: 10.26804/capi.2019.03.01.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Capillarity
Capillarity Physics and Astronomy-Surfaces and Interfaces
CiteScore
7.10
自引率
0.00%
发文量
15
审稿时长
2~3 weeks
期刊介绍: Capillarity publishes high-quality original research articles and current reviews on fundamental scientific principles and innovations of capillarity in physics, chemistry, biology, environmental science and related emerging fields. All advances in theoretical, numerical and experimental approaches to capillarity in capillary tube and interface dominated structure and system area are welcome. The following topics are within (but not limited to) the scope of capillarity: i) Capillary-driven phenomenon in natural/artificial tubes, porous and nanoporous materials ii) Fundamental mechanisms of capillarity aided by theory and experiments iii) Spontaneous imbibition, adsorption, wicking and related applications of capillarity in hydrocarbon production, chemical process and biological sciences iv) Static and dynamic interfacial processes, surfactants, wettability, film and colloids v) New approaches and technologies on capillarity Capillarity is a quarterly open access journal and free to read for all. The journal provides a communicate platform for researchers who are interested in all fields of capillary phenomenon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信