{"title":"图表基于共同关注会话的推荐","authors":"Zhiqiang Pan, Fei Cai, Wanyu Chen, Honghui Chen","doi":"10.1145/3486711","DOIUrl":null,"url":null,"abstract":"Session-based recommendation aims to generate recommendations merely based on the ongoing session, which is a challenging task. Previous methods mainly focus on modeling the sequential signals or the transition relations between items in the current session using RNNs or GNNs to identify user’s intent for recommendation. Such models generally ignore the dynamic connections between the local and global item transition patterns, although the global information is taken into consideration by exploiting the global-level pair-wise item transitions. Moreover, existing methods that mainly adopt the cross-entropy loss with softmax generally face a serious over-fitting problem, harming the recommendation accuracy. Thus, in this article, we propose a Graph Co-Attentive Recommendation Machine (GCARM) for session-based recommendation. In detail, we first design a Graph Co-Attention Network (GCAT) to consider the dynamic correlations between the local and global neighbors of each node during the information propagation. Then, the item-level dynamic connections between the output of the local and global graphs are modeled to generate the final item representations. After that, we produce the prediction scores and design a Max Cross-Entropy (MCE) loss to prevent over-fitting. Extensive experiments are conducted on three benchmark datasets, i.e., Diginetica, Gowalla, and Yoochoose. The experimental results show that GCARM can achieve the state-of-the-art performance in terms of Recall and MRR, especially on boosting the ranking of the target item.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"12 1","pages":"1 - 31"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Graph Co-Attentive Session-based Recommendation\",\"authors\":\"Zhiqiang Pan, Fei Cai, Wanyu Chen, Honghui Chen\",\"doi\":\"10.1145/3486711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Session-based recommendation aims to generate recommendations merely based on the ongoing session, which is a challenging task. Previous methods mainly focus on modeling the sequential signals or the transition relations between items in the current session using RNNs or GNNs to identify user’s intent for recommendation. Such models generally ignore the dynamic connections between the local and global item transition patterns, although the global information is taken into consideration by exploiting the global-level pair-wise item transitions. Moreover, existing methods that mainly adopt the cross-entropy loss with softmax generally face a serious over-fitting problem, harming the recommendation accuracy. Thus, in this article, we propose a Graph Co-Attentive Recommendation Machine (GCARM) for session-based recommendation. In detail, we first design a Graph Co-Attention Network (GCAT) to consider the dynamic correlations between the local and global neighbors of each node during the information propagation. Then, the item-level dynamic connections between the output of the local and global graphs are modeled to generate the final item representations. After that, we produce the prediction scores and design a Max Cross-Entropy (MCE) loss to prevent over-fitting. Extensive experiments are conducted on three benchmark datasets, i.e., Diginetica, Gowalla, and Yoochoose. The experimental results show that GCARM can achieve the state-of-the-art performance in terms of Recall and MRR, especially on boosting the ranking of the target item.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"12 1\",\"pages\":\"1 - 31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3486711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Session-based recommendation aims to generate recommendations merely based on the ongoing session, which is a challenging task. Previous methods mainly focus on modeling the sequential signals or the transition relations between items in the current session using RNNs or GNNs to identify user’s intent for recommendation. Such models generally ignore the dynamic connections between the local and global item transition patterns, although the global information is taken into consideration by exploiting the global-level pair-wise item transitions. Moreover, existing methods that mainly adopt the cross-entropy loss with softmax generally face a serious over-fitting problem, harming the recommendation accuracy. Thus, in this article, we propose a Graph Co-Attentive Recommendation Machine (GCARM) for session-based recommendation. In detail, we first design a Graph Co-Attention Network (GCAT) to consider the dynamic correlations between the local and global neighbors of each node during the information propagation. Then, the item-level dynamic connections between the output of the local and global graphs are modeled to generate the final item representations. After that, we produce the prediction scores and design a Max Cross-Entropy (MCE) loss to prevent over-fitting. Extensive experiments are conducted on three benchmark datasets, i.e., Diginetica, Gowalla, and Yoochoose. The experimental results show that GCARM can achieve the state-of-the-art performance in terms of Recall and MRR, especially on boosting the ranking of the target item.