N. H. Amer, K. Hudha, H. Zamzuri, V. R. Aparow, A. F. Z. Abidin, Zulkiffli Abd Kadir, M. Murrad
{"title":"基于粒子群优化的知识控制器在自主重型车辆自适应路径跟踪控制中的应用","authors":"N. H. Amer, K. Hudha, H. Zamzuri, V. R. Aparow, A. F. Z. Abidin, Zulkiffli Abd Kadir, M. Murrad","doi":"10.5772/intechopen.92667","DOIUrl":null,"url":null,"abstract":"This chapter discusses the development of an adaptive path tracking controller equipped with a knowledge-based supervisory algorithm for an autonomous heavy vehicle. The controller was developed based on a geometric/kinematic controller, the Stanley controller. One of the mostly known issues with any geometric/kinematic controller is that a properly tuned controller may not be valid in a different operating region than the one it was being tuned/optimised on. Therefore, this study proposes an adaptive algorithm to automatically choose an optimal controller parameter depending on the manoeuvring and vehicle conditions. An optimal knowledge database is developed for an adaptive algorithm to automatically obtain the parameter values based on the vehicle speed, v, and heading error, ϕ. Several simulations are carried out with different trajectories and speeds to evaluate the effectiveness of the controller against its predecessors, namely, Stanley and the non-adaptive modified Stanley (Mod St) controllers. The simulated steering actions are then compared against human driver’s experimental data along the predefined paths. It was shown that the proposed adaptive algorithm managed to guide the heavy vehicle successfully and adapt to various trajectories with different vehicle speeds while recording lateral error improvement of up to 82% compared to the original Stanley controller.","PeriodicalId":45089,"journal":{"name":"International Journal of Automation and Control","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Knowledge-Based Controller Optimised with Particle Swarm Optimisation for Adaptive Path Tracking Control of an Autonomous Heavy Vehicle\",\"authors\":\"N. H. Amer, K. Hudha, H. Zamzuri, V. R. Aparow, A. F. Z. Abidin, Zulkiffli Abd Kadir, M. Murrad\",\"doi\":\"10.5772/intechopen.92667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter discusses the development of an adaptive path tracking controller equipped with a knowledge-based supervisory algorithm for an autonomous heavy vehicle. The controller was developed based on a geometric/kinematic controller, the Stanley controller. One of the mostly known issues with any geometric/kinematic controller is that a properly tuned controller may not be valid in a different operating region than the one it was being tuned/optimised on. Therefore, this study proposes an adaptive algorithm to automatically choose an optimal controller parameter depending on the manoeuvring and vehicle conditions. An optimal knowledge database is developed for an adaptive algorithm to automatically obtain the parameter values based on the vehicle speed, v, and heading error, ϕ. Several simulations are carried out with different trajectories and speeds to evaluate the effectiveness of the controller against its predecessors, namely, Stanley and the non-adaptive modified Stanley (Mod St) controllers. The simulated steering actions are then compared against human driver’s experimental data along the predefined paths. It was shown that the proposed adaptive algorithm managed to guide the heavy vehicle successfully and adapt to various trajectories with different vehicle speeds while recording lateral error improvement of up to 82% compared to the original Stanley controller.\",\"PeriodicalId\":45089,\"journal\":{\"name\":\"International Journal of Automation and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.92667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Knowledge-Based Controller Optimised with Particle Swarm Optimisation for Adaptive Path Tracking Control of an Autonomous Heavy Vehicle
This chapter discusses the development of an adaptive path tracking controller equipped with a knowledge-based supervisory algorithm for an autonomous heavy vehicle. The controller was developed based on a geometric/kinematic controller, the Stanley controller. One of the mostly known issues with any geometric/kinematic controller is that a properly tuned controller may not be valid in a different operating region than the one it was being tuned/optimised on. Therefore, this study proposes an adaptive algorithm to automatically choose an optimal controller parameter depending on the manoeuvring and vehicle conditions. An optimal knowledge database is developed for an adaptive algorithm to automatically obtain the parameter values based on the vehicle speed, v, and heading error, ϕ. Several simulations are carried out with different trajectories and speeds to evaluate the effectiveness of the controller against its predecessors, namely, Stanley and the non-adaptive modified Stanley (Mod St) controllers. The simulated steering actions are then compared against human driver’s experimental data along the predefined paths. It was shown that the proposed adaptive algorithm managed to guide the heavy vehicle successfully and adapt to various trajectories with different vehicle speeds while recording lateral error improvement of up to 82% compared to the original Stanley controller.
期刊介绍:
IJAAC addresses the evolution and realisation of the theory, algorithms, techniques, schemes and tools for any kind of automation and control platforms including macro, micro and nano scale machineries and systems, with emphasis on implications that state-of-the-art technology choices have on both the feasibility and practicability of the intended applications. This perspective acknowledges the complexity of the automation, instrumentation and process control methods and delineates itself as an interface between the theory and practice existing in parallel over diverse spheres. Topics covered include: -Control theory and practice- Identification and modelling- Mechatronics- Application of soft computing- Real-time issues- Distributed control and remote monitoring- System integration- Fault detection and isolation (FDI)- Virtual instrumentation and control- Fieldbus technology and interfaces- Agriculture, environment, health applications- Industry, military, space applications