M. Kettermann, S. Abe, A. Raith, J. de Jager, J. Urai
{"title":"膨胀断层中盐对诱发地震活动速率和震级的影响——基于格罗宁根罗特列根储层地质背景的初步结果","authors":"M. Kettermann, S. Abe, A. Raith, J. de Jager, J. Urai","doi":"10.1017/njg.2017.19","DOIUrl":null,"url":null,"abstract":"Abstract The presence of salt in dilatant normal faults may have a strong influence on fault mechanics in the Groningen field and on the related induced seismicity. At present, little is known of the structure of these fault zones. This study starts with the geological evolution of the Groningen area, where, during tectonic faulting, rock salt may have migrated downwards into dilatant faults. These fault zones therefore may contain inclusions of rock salt. Because of its rate-dependent mechanical properties, the presence of salt in a fault may introduce a loading-rate dependency into fault movement and affect the distribution of magnitudes of seismic events. We present a first-look study showing how these processes can be investigated using a combination of analogue and numerical modelling. Full scaling of the models and quantification of implications for induced seismicity in Groningen require further, more detailed studies: an understanding of fault zone structure in the Groningen field is required for improved predictions of induced seismicity. The analogue experiments are based on a simplified stratigraphy of the Groningen area, where it is generally thought that most of the Rotliegend faulting has taken place in the Jurassic, after deposition of the Zechstein. This suggests that, at the time of faulting, the sulphates were already transformed into brittle anhydrite. If these layers were sufficiently brittle to fault in a dilatant fashion, rock salt was able to flow downwards into the dilatant fractures. To test this hypothesis, we use sandbox experiments where we combine cohesive powder as analogue for brittle anhydrites and carbonates with viscous salt analogues to explore the developing fault geometry and the resulting distribution of salt in the faults. Using the observations from analogue models as input, numerical models investigate the stick-slip behaviour of fault zones containing ductile material qualitatively with the discrete element method (DEM). Results show that the DEM approach is suitable for modelling the seismicity of faults containing salt. The stick-slip motion of the fault becomes dependent on shear loading rate with a modification of the frequency–magnitude distribution of the generated seismic events.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"10 1","pages":"s87 - s104"},"PeriodicalIF":1.6000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The effect of salt in dilatant faults on rates and magnitudes of induced seismicity – first results building on the geological setting of the Groningen Rotliegend reservoirs\",\"authors\":\"M. Kettermann, S. Abe, A. Raith, J. de Jager, J. Urai\",\"doi\":\"10.1017/njg.2017.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The presence of salt in dilatant normal faults may have a strong influence on fault mechanics in the Groningen field and on the related induced seismicity. At present, little is known of the structure of these fault zones. This study starts with the geological evolution of the Groningen area, where, during tectonic faulting, rock salt may have migrated downwards into dilatant faults. These fault zones therefore may contain inclusions of rock salt. Because of its rate-dependent mechanical properties, the presence of salt in a fault may introduce a loading-rate dependency into fault movement and affect the distribution of magnitudes of seismic events. We present a first-look study showing how these processes can be investigated using a combination of analogue and numerical modelling. Full scaling of the models and quantification of implications for induced seismicity in Groningen require further, more detailed studies: an understanding of fault zone structure in the Groningen field is required for improved predictions of induced seismicity. The analogue experiments are based on a simplified stratigraphy of the Groningen area, where it is generally thought that most of the Rotliegend faulting has taken place in the Jurassic, after deposition of the Zechstein. This suggests that, at the time of faulting, the sulphates were already transformed into brittle anhydrite. If these layers were sufficiently brittle to fault in a dilatant fashion, rock salt was able to flow downwards into the dilatant fractures. To test this hypothesis, we use sandbox experiments where we combine cohesive powder as analogue for brittle anhydrites and carbonates with viscous salt analogues to explore the developing fault geometry and the resulting distribution of salt in the faults. Using the observations from analogue models as input, numerical models investigate the stick-slip behaviour of fault zones containing ductile material qualitatively with the discrete element method (DEM). Results show that the DEM approach is suitable for modelling the seismicity of faults containing salt. The stick-slip motion of the fault becomes dependent on shear loading rate with a modification of the frequency–magnitude distribution of the generated seismic events.\",\"PeriodicalId\":49768,\"journal\":{\"name\":\"Netherlands Journal of Geosciences-Geologie En Mijnbouw\",\"volume\":\"10 1\",\"pages\":\"s87 - s104\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netherlands Journal of Geosciences-Geologie En Mijnbouw\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/njg.2017.19\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/njg.2017.19","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The effect of salt in dilatant faults on rates and magnitudes of induced seismicity – first results building on the geological setting of the Groningen Rotliegend reservoirs
Abstract The presence of salt in dilatant normal faults may have a strong influence on fault mechanics in the Groningen field and on the related induced seismicity. At present, little is known of the structure of these fault zones. This study starts with the geological evolution of the Groningen area, where, during tectonic faulting, rock salt may have migrated downwards into dilatant faults. These fault zones therefore may contain inclusions of rock salt. Because of its rate-dependent mechanical properties, the presence of salt in a fault may introduce a loading-rate dependency into fault movement and affect the distribution of magnitudes of seismic events. We present a first-look study showing how these processes can be investigated using a combination of analogue and numerical modelling. Full scaling of the models and quantification of implications for induced seismicity in Groningen require further, more detailed studies: an understanding of fault zone structure in the Groningen field is required for improved predictions of induced seismicity. The analogue experiments are based on a simplified stratigraphy of the Groningen area, where it is generally thought that most of the Rotliegend faulting has taken place in the Jurassic, after deposition of the Zechstein. This suggests that, at the time of faulting, the sulphates were already transformed into brittle anhydrite. If these layers were sufficiently brittle to fault in a dilatant fashion, rock salt was able to flow downwards into the dilatant fractures. To test this hypothesis, we use sandbox experiments where we combine cohesive powder as analogue for brittle anhydrites and carbonates with viscous salt analogues to explore the developing fault geometry and the resulting distribution of salt in the faults. Using the observations from analogue models as input, numerical models investigate the stick-slip behaviour of fault zones containing ductile material qualitatively with the discrete element method (DEM). Results show that the DEM approach is suitable for modelling the seismicity of faults containing salt. The stick-slip motion of the fault becomes dependent on shear loading rate with a modification of the frequency–magnitude distribution of the generated seismic events.
期刊介绍:
Netherlands Journal of Geosciences - Geologie en Mijnbouw is a fully open access journal which publishes papers on all aspects of geoscience, providing they are of international interest and quality. As the official publication of the ''Netherlands Journal of Geosciences'' Foundation the journal publishes new and significant research in geosciences with a regional focus on the Netherlands, the North Sea region and relevant adjacent areas. A wide range of topics within the geosciences are covered in the journal, including "geology, physical geography, geophyics, (geo-)archeology, paleontology, hydro(geo)logy, hydrocarbon exploration, modelling and visualisation."
The journal is a continuation of Geologie and Mijnbouw (published by the Royal Geological and Mining Society of the Netherlands, KNGMG) and Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen (published by TNO Geological Survey of the Netherlands). The journal is published in full colour.