不平衡载荷下指数梯度旋转轴的动力特性

IF 1.9 4区 工程技术 Q2 ACOUSTICS
Guangding Wang, Qing Zhao, Liqing Chen, Huiqun Yuan
{"title":"不平衡载荷下指数梯度旋转轴的动力特性","authors":"Guangding Wang, Qing Zhao, Liqing Chen, Huiqun Yuan","doi":"10.1115/1.4056656","DOIUrl":null,"url":null,"abstract":"\n The dynamic behaviors of a pinned-pinned spinning exponentially functionally graded shaft with unbalanced loads are investigated. The shaft is simulated in the Rayleigh beam model considering rotary inertia and gyroscopic effects. The governing equation for the flexural vibration of the shaft is derived via the Hamilton principle. Based on the boundary conditions, both the exact and approximate whirl frequency equations of the system are obtained analytically. Also, the validity of the proposed model is confirmed by comparing it with the results reported in the literature. Finally, a numerical study on the basis of the analytical solutions is performed to evaluate the main parameters, including slenderness ratio (α), gradient index (β), the mass ratio (μ), and eccentric distance (γ) on the whirl frequency, critical spinning speed, mode shapes, and stability of the system. The results reveal that the vibration and instability of the spinning shaft are strongly dependent on the unbalanced load and material gradient.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"37 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic behavior of a spinning exponentially functionally graded shaft with unbalanced load\",\"authors\":\"Guangding Wang, Qing Zhao, Liqing Chen, Huiqun Yuan\",\"doi\":\"10.1115/1.4056656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The dynamic behaviors of a pinned-pinned spinning exponentially functionally graded shaft with unbalanced loads are investigated. The shaft is simulated in the Rayleigh beam model considering rotary inertia and gyroscopic effects. The governing equation for the flexural vibration of the shaft is derived via the Hamilton principle. Based on the boundary conditions, both the exact and approximate whirl frequency equations of the system are obtained analytically. Also, the validity of the proposed model is confirmed by comparing it with the results reported in the literature. Finally, a numerical study on the basis of the analytical solutions is performed to evaluate the main parameters, including slenderness ratio (α), gradient index (β), the mass ratio (μ), and eccentric distance (γ) on the whirl frequency, critical spinning speed, mode shapes, and stability of the system. The results reveal that the vibration and instability of the spinning shaft are strongly dependent on the unbalanced load and material gradient.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056656\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056656","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了受不平衡载荷作用的指数梯度轴的动力特性。采用考虑旋转惯性和陀螺效应的瑞利光束模型对轴进行了仿真。利用汉密尔顿原理推导了轴的弯曲振动控制方程。基于边界条件,解析得到了系统的精确和近似的旋涡频率方程。通过与文献结果的比较,验证了所提模型的有效性。最后,在解析解的基础上进行了数值研究,评价了长细比(α)、梯度指数(β)、质量比(μ)和偏心距(γ)等主要参数对系统的旋流频率、临界转速、模态振型和稳定性的影响。结果表明,旋转轴的振动和失稳与不平衡载荷和材料梯度有很大关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic behavior of a spinning exponentially functionally graded shaft with unbalanced load
The dynamic behaviors of a pinned-pinned spinning exponentially functionally graded shaft with unbalanced loads are investigated. The shaft is simulated in the Rayleigh beam model considering rotary inertia and gyroscopic effects. The governing equation for the flexural vibration of the shaft is derived via the Hamilton principle. Based on the boundary conditions, both the exact and approximate whirl frequency equations of the system are obtained analytically. Also, the validity of the proposed model is confirmed by comparing it with the results reported in the literature. Finally, a numerical study on the basis of the analytical solutions is performed to evaluate the main parameters, including slenderness ratio (α), gradient index (β), the mass ratio (μ), and eccentric distance (γ) on the whirl frequency, critical spinning speed, mode shapes, and stability of the system. The results reveal that the vibration and instability of the spinning shaft are strongly dependent on the unbalanced load and material gradient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信