非负次临界势对Gibbs分布的唯一性

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Steffen Betsch, G. Last
{"title":"非负次临界势对Gibbs分布的唯一性","authors":"Steffen Betsch, G. Last","doi":"10.1214/22-AIHP1265","DOIUrl":null,"url":null,"abstract":"We prove that the distribution of a Gibbs process with non-negative pair potential is uniquely determined as soon as an associated Poisson-driven random connection model (RCM) does not percolate. Our proof combines disagreement coupling in continuum with a coupling of a Gibbs process and a RCM. The improvement over previous uniqueness results is illustrated both in theory and simulations.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential\",\"authors\":\"Steffen Betsch, G. Last\",\"doi\":\"10.1214/22-AIHP1265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the distribution of a Gibbs process with non-negative pair potential is uniquely determined as soon as an associated Poisson-driven random connection model (RCM) does not percolate. Our proof combines disagreement coupling in continuum with a coupling of a Gibbs process and a RCM. The improvement over previous uniqueness results is illustrated both in theory and simulations.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-AIHP1265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-AIHP1265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了只要泊松驱动随机连接模型(RCM)不渗透,具有非负对势的Gibbs过程的分布是唯一确定的。我们的证明结合了连续体中的不一致耦合与吉布斯过程和RCM的耦合。从理论和仿真两方面说明了该方法对以往唯一性结果的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential
We prove that the distribution of a Gibbs process with non-negative pair potential is uniquely determined as soon as an associated Poisson-driven random connection model (RCM) does not percolate. Our proof combines disagreement coupling in continuum with a coupling of a Gibbs process and a RCM. The improvement over previous uniqueness results is illustrated both in theory and simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信