使用非交叉约束的分位数回归估计

IF 0.3 Q4 MATHEMATICS
I. L. Amerise
{"title":"使用非交叉约束的分位数回归估计","authors":"I. L. Amerise","doi":"10.3844/jmssp.2018.107.118","DOIUrl":null,"url":null,"abstract":"In this article we are concerned with a collection of multiple linear regressions that enable the researcher to gain an impression of the entire conditional distribution of a response variable given a set of explanatory variables. More specifically, we investigate the advantage of using a new method to estimate a bunch of non-crossing quantile regressions hyperplanes. The main tool is a weighting system of the data elements that aims to reduce the effect of contamination of the sampled population on the estimated parameters by diminishing the effect of outliers. The performances of the new estimators are evaluated on a number of data sets. We had considerable success with avoiding intersections and in the same time improving the global fitting of conditional quantile regressions. We conjecture that in other situations (e.g., data with high level of skewness, non-constant variances, unusual and imputed data) the method of weighted non-crossing quantiles will lead to estimators with good robustness properties.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"1 1","pages":"107-118"},"PeriodicalIF":0.3000,"publicationDate":"2018-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantile Regression Estimation Using Non-Crossing Constraints\",\"authors\":\"I. L. Amerise\",\"doi\":\"10.3844/jmssp.2018.107.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we are concerned with a collection of multiple linear regressions that enable the researcher to gain an impression of the entire conditional distribution of a response variable given a set of explanatory variables. More specifically, we investigate the advantage of using a new method to estimate a bunch of non-crossing quantile regressions hyperplanes. The main tool is a weighting system of the data elements that aims to reduce the effect of contamination of the sampled population on the estimated parameters by diminishing the effect of outliers. The performances of the new estimators are evaluated on a number of data sets. We had considerable success with avoiding intersections and in the same time improving the global fitting of conditional quantile regressions. We conjecture that in other situations (e.g., data with high level of skewness, non-constant variances, unusual and imputed data) the method of weighted non-crossing quantiles will lead to estimators with good robustness properties.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"1 1\",\"pages\":\"107-118\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmssp.2018.107.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2018.107.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们关注的是多元线性回归的集合,它使研究人员能够获得给定一组解释变量的响应变量的整个条件分布的印象。更具体地说,我们研究了使用一种新方法来估计一堆非交叉分位数回归超平面的优点。主要工具是数据元素的加权系统,其目的是通过减少异常值的影响来减少采样总体污染对估计参数的影响。在多个数据集上对新估计器的性能进行了评估。我们在避免交集方面取得了相当大的成功,同时改进了条件分位数回归的全局拟合。我们推测,在其他情况下(例如,具有高度偏度的数据,非恒定方差,异常数据和输入数据),加权非交叉分位数方法将导致具有良好鲁棒性的估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantile Regression Estimation Using Non-Crossing Constraints
In this article we are concerned with a collection of multiple linear regressions that enable the researcher to gain an impression of the entire conditional distribution of a response variable given a set of explanatory variables. More specifically, we investigate the advantage of using a new method to estimate a bunch of non-crossing quantile regressions hyperplanes. The main tool is a weighting system of the data elements that aims to reduce the effect of contamination of the sampled population on the estimated parameters by diminishing the effect of outliers. The performances of the new estimators are evaluated on a number of data sets. We had considerable success with avoiding intersections and in the same time improving the global fitting of conditional quantile regressions. We conjecture that in other situations (e.g., data with high level of skewness, non-constant variances, unusual and imputed data) the method of weighted non-crossing quantiles will lead to estimators with good robustness properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信