Woojun Choi, Yongtae Lee, Seonhong Kim, Sanghoon Lee, Jieun Jang, J. Chun, K. Makinwa, Youngcheol Chae
{"title":"一个基于0.53pJK2 7000μm2电阻的温度传感器,误差为±0.35°C (3σ)","authors":"Woojun Choi, Yongtae Lee, Seonhong Kim, Sanghoon Lee, Jieun Jang, J. Chun, K. Makinwa, Youngcheol Chae","doi":"10.1109/ISSCC.2018.8310314","DOIUrl":null,"url":null,"abstract":"In microprocessors and DRAMs, on-chip temperature sensors are essential components, ensuring reliability by monitoring thermal gradients and hot spots. Such sensors must be as small as possible, since multiple sensors are required for dense thermal monitoring. However, conventional BJT-based temperature sensors are not compatible with the sub-1V supply of advanced processes. Subthreshold MOSFETs can operate from lower supplies, but at high temperatures their performance is limited by leakage [1,2]. Thermal diffusivity (TD) sensors achieve sub-1V operation and small area with moderate accuracy, but require milliwatts of power [3]. Recently, resistor-based sensors based on RC WienBridge (WB) filters have realized high resolution and energy efficiency [4,5]. Fundamentally, they are robust to process and supply-voltage scaling. However, their readout circuitry has been based on continuous-time (CT) ΔΣ ADCs or frequency-locked loops (FLLs), which require precision analog circuits and occupy considerable area (>0.7mm2).","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"13 1","pages":"322-324"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A 0.53pJK2 7000μm2 resistor-based temperature sensor with an inaccuracy of ±0.35°C (3σ) in 65nm CMOS\",\"authors\":\"Woojun Choi, Yongtae Lee, Seonhong Kim, Sanghoon Lee, Jieun Jang, J. Chun, K. Makinwa, Youngcheol Chae\",\"doi\":\"10.1109/ISSCC.2018.8310314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In microprocessors and DRAMs, on-chip temperature sensors are essential components, ensuring reliability by monitoring thermal gradients and hot spots. Such sensors must be as small as possible, since multiple sensors are required for dense thermal monitoring. However, conventional BJT-based temperature sensors are not compatible with the sub-1V supply of advanced processes. Subthreshold MOSFETs can operate from lower supplies, but at high temperatures their performance is limited by leakage [1,2]. Thermal diffusivity (TD) sensors achieve sub-1V operation and small area with moderate accuracy, but require milliwatts of power [3]. Recently, resistor-based sensors based on RC WienBridge (WB) filters have realized high resolution and energy efficiency [4,5]. Fundamentally, they are robust to process and supply-voltage scaling. However, their readout circuitry has been based on continuous-time (CT) ΔΣ ADCs or frequency-locked loops (FLLs), which require precision analog circuits and occupy considerable area (>0.7mm2).\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"13 1\",\"pages\":\"322-324\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 0.53pJK2 7000μm2 resistor-based temperature sensor with an inaccuracy of ±0.35°C (3σ) in 65nm CMOS
In microprocessors and DRAMs, on-chip temperature sensors are essential components, ensuring reliability by monitoring thermal gradients and hot spots. Such sensors must be as small as possible, since multiple sensors are required for dense thermal monitoring. However, conventional BJT-based temperature sensors are not compatible with the sub-1V supply of advanced processes. Subthreshold MOSFETs can operate from lower supplies, but at high temperatures their performance is limited by leakage [1,2]. Thermal diffusivity (TD) sensors achieve sub-1V operation and small area with moderate accuracy, but require milliwatts of power [3]. Recently, resistor-based sensors based on RC WienBridge (WB) filters have realized high resolution and energy efficiency [4,5]. Fundamentally, they are robust to process and supply-voltage scaling. However, their readout circuitry has been based on continuous-time (CT) ΔΣ ADCs or frequency-locked loops (FLLs), which require precision analog circuits and occupy considerable area (>0.7mm2).