一般位置上的不同角度

Henry Fleischmann, S. Konyagin, Steven J. Miller, E. Palsson, Ethan Pesikoff, Charles Wolf
{"title":"一般位置上的不同角度","authors":"Henry Fleischmann, S. Konyagin, Steven J. Miller, E. Palsson, Ethan Pesikoff, Charles Wolf","doi":"10.48550/arXiv.2206.04367","DOIUrl":null,"url":null,"abstract":"The Erd\\H{o}s distinct distance problem is a ubiquitous problem in discrete geometry. Somewhat less well known is Erd\\H{o}s' distinct angle problem, the problem of finding the minimum number of distinct angles between $n$ non-collinear points in the plane. Recent work has introduced bounds on a wide array of variants of this problem, inspired by similar variants in the distance setting. In this short note, we improve the best known upper bound for the minimum number of distinct angles formed by $n$ points in general position from $O(n^{\\log_2(7)})$ to $O(n^2)$. Before this work, similar bounds relied on projections onto a generic plane from higher dimensional space. In this paper, we employ the geometric properties of a logarithmic spiral, sidestepping the need for a projection. We also apply this configuration to reduce the upper bound on the largest integer such that any set of $n$ points in general position has a subset of that size with all distinct angles. This bound is decreased from $O(n^{\\log_2(7)/3})$ to $O(n^{1/2})$.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"48 1","pages":"113283"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Distinct Angles in General Position\",\"authors\":\"Henry Fleischmann, S. Konyagin, Steven J. Miller, E. Palsson, Ethan Pesikoff, Charles Wolf\",\"doi\":\"10.48550/arXiv.2206.04367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Erd\\\\H{o}s distinct distance problem is a ubiquitous problem in discrete geometry. Somewhat less well known is Erd\\\\H{o}s' distinct angle problem, the problem of finding the minimum number of distinct angles between $n$ non-collinear points in the plane. Recent work has introduced bounds on a wide array of variants of this problem, inspired by similar variants in the distance setting. In this short note, we improve the best known upper bound for the minimum number of distinct angles formed by $n$ points in general position from $O(n^{\\\\log_2(7)})$ to $O(n^2)$. Before this work, similar bounds relied on projections onto a generic plane from higher dimensional space. In this paper, we employ the geometric properties of a logarithmic spiral, sidestepping the need for a projection. We also apply this configuration to reduce the upper bound on the largest integer such that any set of $n$ points in general position has a subset of that size with all distinct angles. This bound is decreased from $O(n^{\\\\log_2(7)/3})$ to $O(n^{1/2})$.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"48 1\",\"pages\":\"113283\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.04367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.04367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Erd\H{o}s明显距离问题是离散几何中普遍存在的问题。鲜为人知的是Erd\H{o}s的异角问题,求平面上n个非共线点之间的最小异角数的问题。最近的工作在这个问题的一系列变体上引入了边界,灵感来自于距离设置中的类似变体。在这篇简短的笔记中,我们将一般位置上由$n$点构成的不同角度的最小数目的已知上界从$O(n^{\log_2(7)})$改进为$O(n^2)$。在此之前,类似的边界依赖于高维空间在一般平面上的投影。在本文中,我们利用对数螺旋的几何性质,避免了对投影的需要。我们还应用这个构型来减小最大整数的上界,使得任意n个点的集合在一般位置上都有一个具有所有不同角度的相同大小的子集。这个约束是减少从O (n ^ {\ log_2(7) / 3}),美元O (n ^{5})美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinct Angles in General Position
The Erd\H{o}s distinct distance problem is a ubiquitous problem in discrete geometry. Somewhat less well known is Erd\H{o}s' distinct angle problem, the problem of finding the minimum number of distinct angles between $n$ non-collinear points in the plane. Recent work has introduced bounds on a wide array of variants of this problem, inspired by similar variants in the distance setting. In this short note, we improve the best known upper bound for the minimum number of distinct angles formed by $n$ points in general position from $O(n^{\log_2(7)})$ to $O(n^2)$. Before this work, similar bounds relied on projections onto a generic plane from higher dimensional space. In this paper, we employ the geometric properties of a logarithmic spiral, sidestepping the need for a projection. We also apply this configuration to reduce the upper bound on the largest integer such that any set of $n$ points in general position has a subset of that size with all distinct angles. This bound is decreased from $O(n^{\log_2(7)/3})$ to $O(n^{1/2})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信