{"title":"环面正则固有超映射的度","authors":"Maria Elisa Fernandes, Claudio Alexandre Piedade","doi":"10.26493/2590-9770.1350.C36","DOIUrl":null,"url":null,"abstract":"Recently the classification of all possible faithful transitive permutation representations of the group of symmetries of a regular toroidal map was accomplished. In this paper we complete this investigation on a surface of genus 1 considering the group of a regular toroidal hypermap of type $(3,3,3)$ that is a subgroup of index $2$ of the group of symmetries of a toroidal map of type $\\{6,3\\}$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The degrees of toroidal regular proper hypermaps\",\"authors\":\"Maria Elisa Fernandes, Claudio Alexandre Piedade\",\"doi\":\"10.26493/2590-9770.1350.C36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently the classification of all possible faithful transitive permutation representations of the group of symmetries of a regular toroidal map was accomplished. In this paper we complete this investigation on a surface of genus 1 considering the group of a regular toroidal hypermap of type $(3,3,3)$ that is a subgroup of index $2$ of the group of symmetries of a toroidal map of type $\\\\{6,3\\\\}$.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1350.C36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1350.C36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recently the classification of all possible faithful transitive permutation representations of the group of symmetries of a regular toroidal map was accomplished. In this paper we complete this investigation on a surface of genus 1 considering the group of a regular toroidal hypermap of type $(3,3,3)$ that is a subgroup of index $2$ of the group of symmetries of a toroidal map of type $\{6,3\}$.