Shawn Skyler, Dor Atzmon, Tamir Yaffe, Ariel Felner
{"title":"用启发式搜索求解守望者路线问题","authors":"Shawn Skyler, Dor Atzmon, Tamir Yaffe, Ariel Felner","doi":"10.1613/jair.1.13685","DOIUrl":null,"url":null,"abstract":"This paper solves the Watchman Route Problem (WRP) on a general discrete graph with Heuristic Search. Given a graph, a line-of-sight (LOS) function, and a start vertex, the task is to (offline) find a (shortest) path through the graph such that all vertices in the graph will be visually seen by at least one vertex on the path. WRP is reminiscent but different from graph covering and mapping problems, which are done online on an unknown graph. We formalize WRP as a heuristic search problem and solve it optimally with an A*-based algorithm. We develop a series of admissible heuristics with increasing difficulty and accuracy. Our heuristics abstract the underlying graph into a disjoint line-of-sight graph (GDLS) which is based on disjoint clusters of vertices such that vertices within the same cluster have LOS to the same specific vertex. We use solutions for the Minimum Spanning Tree (MST) and the Traveling Salesman Problem (TSP) of GDLS as admissible heuristics for WRP. We theoretically and empirically investigate these heuristics. Then, we show how the optimal methods can be modified (by intelligently pruning away large sub-trees) to obtain various suboptimal solvers with and without bound guarantees. These suboptimal solvers are much faster and expand fewer nodes than the optimal solver with only minor reduction in the quality of the solution.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"42 1","pages":"747-793"},"PeriodicalIF":4.5000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the Watchman Route Problem with Heuristic Search\",\"authors\":\"Shawn Skyler, Dor Atzmon, Tamir Yaffe, Ariel Felner\",\"doi\":\"10.1613/jair.1.13685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper solves the Watchman Route Problem (WRP) on a general discrete graph with Heuristic Search. Given a graph, a line-of-sight (LOS) function, and a start vertex, the task is to (offline) find a (shortest) path through the graph such that all vertices in the graph will be visually seen by at least one vertex on the path. WRP is reminiscent but different from graph covering and mapping problems, which are done online on an unknown graph. We formalize WRP as a heuristic search problem and solve it optimally with an A*-based algorithm. We develop a series of admissible heuristics with increasing difficulty and accuracy. Our heuristics abstract the underlying graph into a disjoint line-of-sight graph (GDLS) which is based on disjoint clusters of vertices such that vertices within the same cluster have LOS to the same specific vertex. We use solutions for the Minimum Spanning Tree (MST) and the Traveling Salesman Problem (TSP) of GDLS as admissible heuristics for WRP. We theoretically and empirically investigate these heuristics. Then, we show how the optimal methods can be modified (by intelligently pruning away large sub-trees) to obtain various suboptimal solvers with and without bound guarantees. These suboptimal solvers are much faster and expand fewer nodes than the optimal solver with only minor reduction in the quality of the solution.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":\"42 1\",\"pages\":\"747-793\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.13685\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.13685","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Solving the Watchman Route Problem with Heuristic Search
This paper solves the Watchman Route Problem (WRP) on a general discrete graph with Heuristic Search. Given a graph, a line-of-sight (LOS) function, and a start vertex, the task is to (offline) find a (shortest) path through the graph such that all vertices in the graph will be visually seen by at least one vertex on the path. WRP is reminiscent but different from graph covering and mapping problems, which are done online on an unknown graph. We formalize WRP as a heuristic search problem and solve it optimally with an A*-based algorithm. We develop a series of admissible heuristics with increasing difficulty and accuracy. Our heuristics abstract the underlying graph into a disjoint line-of-sight graph (GDLS) which is based on disjoint clusters of vertices such that vertices within the same cluster have LOS to the same specific vertex. We use solutions for the Minimum Spanning Tree (MST) and the Traveling Salesman Problem (TSP) of GDLS as admissible heuristics for WRP. We theoretically and empirically investigate these heuristics. Then, we show how the optimal methods can be modified (by intelligently pruning away large sub-trees) to obtain various suboptimal solvers with and without bound guarantees. These suboptimal solvers are much faster and expand fewer nodes than the optimal solver with only minor reduction in the quality of the solution.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.