一种高效的基于遗传算法的自动ML分类与回归方法

Chereddy Spandana, Ippatapu Venkata Srisurya, S. Aasha Nandhini, R. P. Kumar, G. Bharathi Mohan, Parathasarathy Srinivasan
{"title":"一种高效的基于遗传算法的自动ML分类与回归方法","authors":"Chereddy Spandana, Ippatapu Venkata Srisurya, S. Aasha Nandhini, R. P. Kumar, G. Bharathi Mohan, Parathasarathy Srinivasan","doi":"10.1109/IDCIoT56793.2023.10053442","DOIUrl":null,"url":null,"abstract":"In recent years, AutoML is booming as the time-consuming and iterative tasks involved in developing a machine learning model can be automated using AutoML. It aims to lessen the requirement for skilled individuals to create the ML model. Additionally, it helps to increase productivity and advance machine learning research. Hence, this paper focusses on developing an AutoML model using genetic algorithm to automatically fulfill the function of network architecture search. The proposed methodology has been evaluated in different scenarios such as binary classification and regression. From the results it is observed that the accuracy achieved for binary classification and regression is 98%.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"77 1","pages":"371-376"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Genetic Algorithm based Auto ML Approach for Classification and Regression\",\"authors\":\"Chereddy Spandana, Ippatapu Venkata Srisurya, S. Aasha Nandhini, R. P. Kumar, G. Bharathi Mohan, Parathasarathy Srinivasan\",\"doi\":\"10.1109/IDCIoT56793.2023.10053442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, AutoML is booming as the time-consuming and iterative tasks involved in developing a machine learning model can be automated using AutoML. It aims to lessen the requirement for skilled individuals to create the ML model. Additionally, it helps to increase productivity and advance machine learning research. Hence, this paper focusses on developing an AutoML model using genetic algorithm to automatically fulfill the function of network architecture search. The proposed methodology has been evaluated in different scenarios such as binary classification and regression. From the results it is observed that the accuracy achieved for binary classification and regression is 98%.\",\"PeriodicalId\":60583,\"journal\":{\"name\":\"物联网技术\",\"volume\":\"77 1\",\"pages\":\"371-376\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物联网技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/IDCIoT56793.2023.10053442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,AutoML正在蓬勃发展,因为开发机器学习模型所涉及的耗时和迭代任务可以使用AutoML自动化。它旨在减少对熟练人员创建ML模型的要求。此外,它有助于提高生产力和推进机器学习研究。因此,本文致力于开发一种基于遗传算法的AutoML模型来自动完成网络结构搜索的功能。该方法已在二元分类和回归等不同场景下进行了评估。从结果中可以看出,二元分类和回归的准确率达到98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Genetic Algorithm based Auto ML Approach for Classification and Regression
In recent years, AutoML is booming as the time-consuming and iterative tasks involved in developing a machine learning model can be automated using AutoML. It aims to lessen the requirement for skilled individuals to create the ML model. Additionally, it helps to increase productivity and advance machine learning research. Hence, this paper focusses on developing an AutoML model using genetic algorithm to automatically fulfill the function of network architecture search. The proposed methodology has been evaluated in different scenarios such as binary classification and regression. From the results it is observed that the accuracy achieved for binary classification and regression is 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5689
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信