圆柱开口管内非线性持续振荡的数值研究

P. Rendón, R. Velasco-Segura
{"title":"圆柱开口管内非线性持续振荡的数值研究","authors":"P. Rendón, R. Velasco-Segura","doi":"10.1121/2.0000892","DOIUrl":null,"url":null,"abstract":"The study of nonlinear sustained oscillations in ducts requires taking into account a variety of relevant physical phenomena, which may occur at different scales, and which therefore are described by different fluid dynamics regimes. In the present work the joint effect of these phenomena is investigated by means of numerical simulation, using a full-wave finite volume method (FiVoNAGI) over a 2D spatial domain assuming axial symmetry, which includes nonlinear propagation and thermoviscous attenuation over a wide range of scales. Excitation at one end of a straight cylindrical tube, open at the other end, is provided by a nonlinear feedback mechanism. First, a transitory state is observed, which is finally followed by a sustained-oscillation state with a self-regulated resonance frequency. For sufficiently large values of the excitation amplitude, shock waves are formed, and their development can be analyzed in terms of progressive waves. The results obtained reproduce qualitatively some well-known featur...","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of nonlinear sustained oscillations in a cylindrical open-ended tube\",\"authors\":\"P. Rendón, R. Velasco-Segura\",\"doi\":\"10.1121/2.0000892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of nonlinear sustained oscillations in ducts requires taking into account a variety of relevant physical phenomena, which may occur at different scales, and which therefore are described by different fluid dynamics regimes. In the present work the joint effect of these phenomena is investigated by means of numerical simulation, using a full-wave finite volume method (FiVoNAGI) over a 2D spatial domain assuming axial symmetry, which includes nonlinear propagation and thermoviscous attenuation over a wide range of scales. Excitation at one end of a straight cylindrical tube, open at the other end, is provided by a nonlinear feedback mechanism. First, a transitory state is observed, which is finally followed by a sustained-oscillation state with a self-regulated resonance frequency. For sufficiently large values of the excitation amplitude, shock waves are formed, and their development can be analyzed in terms of progressive waves. The results obtained reproduce qualitatively some well-known featur...\",\"PeriodicalId\":20469,\"journal\":{\"name\":\"Proc. Meet. Acoust.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. Meet. Acoust.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/2.0000892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究管道中的非线性持续振荡需要考虑各种相关的物理现象,这些现象可能发生在不同的尺度上,因此可以用不同的流体动力学体系来描述。在本工作中,通过数值模拟的方法研究了这些现象的联合效应,使用全波有限体积法(FiVoNAGI)在二维空间域假设轴对称,其中包括非线性传播和热粘性衰减在大范围内的尺度。在直圆柱管的一端激发,另一端打开,由非线性反馈机构提供。首先,观察到一个短暂的状态,最后是一个具有自调节谐振频率的持续振荡状态。当激发幅值足够大时,就会形成激波,其发展可以用递进波来分析。所得结果定性再现了一些众所周知的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical study of nonlinear sustained oscillations in a cylindrical open-ended tube
The study of nonlinear sustained oscillations in ducts requires taking into account a variety of relevant physical phenomena, which may occur at different scales, and which therefore are described by different fluid dynamics regimes. In the present work the joint effect of these phenomena is investigated by means of numerical simulation, using a full-wave finite volume method (FiVoNAGI) over a 2D spatial domain assuming axial symmetry, which includes nonlinear propagation and thermoviscous attenuation over a wide range of scales. Excitation at one end of a straight cylindrical tube, open at the other end, is provided by a nonlinear feedback mechanism. First, a transitory state is observed, which is finally followed by a sustained-oscillation state with a self-regulated resonance frequency. For sufficiently large values of the excitation amplitude, shock waves are formed, and their development can be analyzed in terms of progressive waves. The results obtained reproduce qualitatively some well-known featur...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信