关于正态拉普拉斯随机波动模型

Q3 Mathematics
Shiji Kavungal, Rahul Thekkedath
{"title":"关于正态拉普拉斯随机波动模型","authors":"Shiji Kavungal, Rahul Thekkedath","doi":"10.1515/eqc-2022-0013","DOIUrl":null,"url":null,"abstract":"Abstract This paper analyses a stochastic volatility model generated by first order normal-Laplace autoregressive process. The model parameters are estimated by the generalized method of moments. A simulation experiment is carried out to check the performance of the estimates. Finally, a real data analysis is provided to illustrate the practical utility of the proposed model and show that it captures the stylized factors of the financial return series.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"65 1","pages":"127 - 136"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Normal-Laplace Stochastic Volatility Model\",\"authors\":\"Shiji Kavungal, Rahul Thekkedath\",\"doi\":\"10.1515/eqc-2022-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper analyses a stochastic volatility model generated by first order normal-Laplace autoregressive process. The model parameters are estimated by the generalized method of moments. A simulation experiment is carried out to check the performance of the estimates. Finally, a real data analysis is provided to illustrate the practical utility of the proposed model and show that it captures the stylized factors of the financial return series.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"65 1\",\"pages\":\"127 - 136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2022-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2022-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文分析了一阶正态拉普拉斯自回归过程生成的随机波动模型。采用广义矩量法对模型参数进行估计。通过仿真实验验证了估计的性能。最后,提供了一个真实的数据分析,以说明所提出的模型的实际效用,并表明它捕获了财务回报系列的风格化因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Normal-Laplace Stochastic Volatility Model
Abstract This paper analyses a stochastic volatility model generated by first order normal-Laplace autoregressive process. The model parameters are estimated by the generalized method of moments. A simulation experiment is carried out to check the performance of the estimates. Finally, a real data analysis is provided to illustrate the practical utility of the proposed model and show that it captures the stylized factors of the financial return series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信