基于Sobolev空间正则性的多线性乘法器的表征

L. Grafakos, Bae Jun Park
{"title":"基于Sobolev空间正则性的多线性乘法器的表征","authors":"L. Grafakos, Bae Jun Park","doi":"10.1090/TRAN/8430","DOIUrl":null,"url":null,"abstract":"We provide necessary and sufficient conditions for multilinear multiplier operators with symbols in $L^r$-based product-type Sobolev spaces uniformly over all annuli to be bounded from products of Hardy spaces to a Lebesgue space. We consider the case $1 2$ cannot be handled by known techniques and remains open. Our result not only extends but also establishes the sharpness of previous results of Miyachi, Nguyen, Tomita, and the first author, who only considered the case $r=2$.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Characterization of multilinear multipliers in terms of Sobolev space regularity\",\"authors\":\"L. Grafakos, Bae Jun Park\",\"doi\":\"10.1090/TRAN/8430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide necessary and sufficient conditions for multilinear multiplier operators with symbols in $L^r$-based product-type Sobolev spaces uniformly over all annuli to be bounded from products of Hardy spaces to a Lebesgue space. We consider the case $1 2$ cannot be handled by known techniques and remains open. Our result not only extends but also establishes the sharpness of previous results of Miyachi, Nguyen, Tomita, and the first author, who only considered the case $r=2$.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/TRAN/8430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

给出了基于L^r$的积型Sobolev空间中具有符号的多线性乘子算子在所有环空上一致地从Hardy空间的积界到Lebesgue空间的充要条件。我们认为本案无法用已知技术处理,仍未结案。我们的结果不仅扩展而且建立了Miyachi, Nguyen, Tomita和第一作者之前的结果的清晰度,他们只考虑了情况$r=2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of multilinear multipliers in terms of Sobolev space regularity
We provide necessary and sufficient conditions for multilinear multiplier operators with symbols in $L^r$-based product-type Sobolev spaces uniformly over all annuli to be bounded from products of Hardy spaces to a Lebesgue space. We consider the case $1 2$ cannot be handled by known techniques and remains open. Our result not only extends but also establishes the sharpness of previous results of Miyachi, Nguyen, Tomita, and the first author, who only considered the case $r=2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信