{"title":"用双曲优化证明多项式的非负性","authors":"J. Saunderson","doi":"10.1137/19m1253551","DOIUrl":null,"url":null,"abstract":"We describe a new approach to certifying the global nonnegativity of multivariate polynomials by solving hyperbolic optimization problems---a class of convex optimization problems that generalize semidefinite programs. We show how to produce families of nonnegative polynomials (which we call hyperbolic certificates of nonnegativity) from any hyperbolic polynomial. We investigate the pairs $(n,d)$ for which there is a hyperbolic polynomial of degree $d$ in $n$ variables such that an associated hyperbolic certificate of nonnegativity is not a sum of squares. If $d\\geq 4$ we show that this occurs whenever $n\\geq 4$. In the degree three case, we find an explicit hyperbolic cubic in $43$ variables that gives hyperbolic certificates that are not sums of squares. As a corollary, we obtain the first known hyperbolic cubic no power of which has a definite determinantal representation. Our approach also allows us to show that, given a cubic $p$, and a direction $e$, the decision problem \"Is $p$ hyperbolic with respect to $e$?\" is co-NP hard.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Certifying Polynomial Nonnegativity via Hyperbolic Optimization\",\"authors\":\"J. Saunderson\",\"doi\":\"10.1137/19m1253551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a new approach to certifying the global nonnegativity of multivariate polynomials by solving hyperbolic optimization problems---a class of convex optimization problems that generalize semidefinite programs. We show how to produce families of nonnegative polynomials (which we call hyperbolic certificates of nonnegativity) from any hyperbolic polynomial. We investigate the pairs $(n,d)$ for which there is a hyperbolic polynomial of degree $d$ in $n$ variables such that an associated hyperbolic certificate of nonnegativity is not a sum of squares. If $d\\\\geq 4$ we show that this occurs whenever $n\\\\geq 4$. In the degree three case, we find an explicit hyperbolic cubic in $43$ variables that gives hyperbolic certificates that are not sums of squares. As a corollary, we obtain the first known hyperbolic cubic no power of which has a definite determinantal representation. Our approach also allows us to show that, given a cubic $p$, and a direction $e$, the decision problem \\\"Is $p$ hyperbolic with respect to $e$?\\\" is co-NP hard.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/19m1253551\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19m1253551","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Certifying Polynomial Nonnegativity via Hyperbolic Optimization
We describe a new approach to certifying the global nonnegativity of multivariate polynomials by solving hyperbolic optimization problems---a class of convex optimization problems that generalize semidefinite programs. We show how to produce families of nonnegative polynomials (which we call hyperbolic certificates of nonnegativity) from any hyperbolic polynomial. We investigate the pairs $(n,d)$ for which there is a hyperbolic polynomial of degree $d$ in $n$ variables such that an associated hyperbolic certificate of nonnegativity is not a sum of squares. If $d\geq 4$ we show that this occurs whenever $n\geq 4$. In the degree three case, we find an explicit hyperbolic cubic in $43$ variables that gives hyperbolic certificates that are not sums of squares. As a corollary, we obtain the first known hyperbolic cubic no power of which has a definite determinantal representation. Our approach also allows us to show that, given a cubic $p$, and a direction $e$, the decision problem "Is $p$ hyperbolic with respect to $e$?" is co-NP hard.