基于图像的地籍三维模型城市尺度变化检测

Aparna Taneja, Luca Ballan, M. Pollefeys
{"title":"基于图像的地籍三维模型城市尺度变化检测","authors":"Aparna Taneja, Luca Ballan, M. Pollefeys","doi":"10.1109/CVPR.2013.22","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to detect changes in the geometry of a city using panoramic images captured by a car driving around the city. We designed our approach to account for all the challenges involved in a large scale application of change detection, such as, inaccuracies in the input geometry, errors in the geo-location data of the images, as well as, the limited amount of information due to sparse imagery. We evaluated our approach on an area of 6 square kilometers inside a city, using 3420 images downloaded from Google Street View. These images besides being publicly available, are also a good example of panoramic images captured with a driving vehicle, and hence demonstrating all the possible challenges resulting from such an acquisition. We also quantitatively compared the performance of our approach with respect to a ground truth, as well as to prior work. This evaluation shows that our approach outperforms the current state of the art.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"19 1","pages":"113-120"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"City-Scale Change Detection in Cadastral 3D Models Using Images\",\"authors\":\"Aparna Taneja, Luca Ballan, M. Pollefeys\",\"doi\":\"10.1109/CVPR.2013.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method to detect changes in the geometry of a city using panoramic images captured by a car driving around the city. We designed our approach to account for all the challenges involved in a large scale application of change detection, such as, inaccuracies in the input geometry, errors in the geo-location data of the images, as well as, the limited amount of information due to sparse imagery. We evaluated our approach on an area of 6 square kilometers inside a city, using 3420 images downloaded from Google Street View. These images besides being publicly available, are also a good example of panoramic images captured with a driving vehicle, and hence demonstrating all the possible challenges resulting from such an acquisition. We also quantitatively compared the performance of our approach with respect to a ground truth, as well as to prior work. This evaluation shows that our approach outperforms the current state of the art.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"19 1\",\"pages\":\"113-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

在本文中,我们提出了一种方法,利用在城市周围行驶的汽车捕获的全景图像来检测城市几何形状的变化。我们设计了我们的方法来解释大规模应用变化检测所涉及的所有挑战,例如,输入几何形状的不准确,图像地理位置数据的错误,以及由于稀疏图像而导致的信息量有限。我们在一个城市内6平方公里的区域评估了我们的方法,使用了从谷歌街景下载的3420张图像。这些图像除了可以公开获取外,也是驾驶车辆拍摄的全景图像的一个很好的例子,因此展示了此类获取可能带来的所有挑战。我们还定量地比较了我们的方法相对于一个基本真理的性能,以及之前的工作。这一评估表明,我们的方法优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
City-Scale Change Detection in Cadastral 3D Models Using Images
In this paper, we propose a method to detect changes in the geometry of a city using panoramic images captured by a car driving around the city. We designed our approach to account for all the challenges involved in a large scale application of change detection, such as, inaccuracies in the input geometry, errors in the geo-location data of the images, as well as, the limited amount of information due to sparse imagery. We evaluated our approach on an area of 6 square kilometers inside a city, using 3420 images downloaded from Google Street View. These images besides being publicly available, are also a good example of panoramic images captured with a driving vehicle, and hence demonstrating all the possible challenges resulting from such an acquisition. We also quantitatively compared the performance of our approach with respect to a ground truth, as well as to prior work. This evaluation shows that our approach outperforms the current state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信