lacary型多项式的零点位置

IF 0.5 Q3 MATHEMATICS
Subhasis Das
{"title":"lacary型多项式的零点位置","authors":"Subhasis Das","doi":"10.52846/ami.v49i2.1614","DOIUrl":null,"url":null,"abstract":"For a given polynomial p(z) of degree n with real or complex coefficients, our basic aim has been to determine the smallest region in which all the zeros of p(z) lie. In the present paper, we have obtained a result by using Lacunary type polynomial which gives the region of zeros neither circular nor annular except in some particular cases. Our result plays an important role to reduce the region of polynomial zeros.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Location of zeros of a Lacunary type polynomial\",\"authors\":\"Subhasis Das\",\"doi\":\"10.52846/ami.v49i2.1614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a given polynomial p(z) of degree n with real or complex coefficients, our basic aim has been to determine the smallest region in which all the zeros of p(z) lie. In the present paper, we have obtained a result by using Lacunary type polynomial which gives the region of zeros neither circular nor annular except in some particular cases. Our result plays an important role to reduce the region of polynomial zeros.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v49i2.1614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v49i2.1614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定的n次多项式p(z),具有实系数或复系数,我们的基本目标是确定p(z)的所有零所在的最小区域。本文利用拉库纳型多项式得到了一个结果,除了某些特殊情况外,该结果给出了零的区域既不是圆的也不是环的。我们的结果对于减少多项式零区域具有重要的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Location of zeros of a Lacunary type polynomial
For a given polynomial p(z) of degree n with real or complex coefficients, our basic aim has been to determine the smallest region in which all the zeros of p(z) lie. In the present paper, we have obtained a result by using Lacunary type polynomial which gives the region of zeros neither circular nor annular except in some particular cases. Our result plays an important role to reduce the region of polynomial zeros.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信