关于平方的可加补的格林问题

Pub Date : 2020-12-03 DOI:10.5802/crmath.107
Yuchen Ding
{"title":"关于平方的可加补的格林问题","authors":"Yuchen Ding","doi":"10.5802/crmath.107","DOIUrl":null,"url":null,"abstract":"Let A and B be two subsets of the nonnegative integers. We call A and B additive complements if all sufficiently large integers n can be written as a +b, where a ∈ A and b ∈ B . Let S = {12,22,32, · · ·} be the set of all square numbers. Ben Green was interested in the additive complement of S. He asked whether there is an additive complement B = {bn }n=1 ⊆Nwhich satisfies bn = π 2 16 n 2+o(n2). Recently, Chen and Fang proved that if B is such an additive complement, then limsup n→∞ π2 16 n 2 −bn n1/2 logn ≥ √ 2 π 1 log4 . They further conjectured that limsup n→∞ π2 16 n 2 −bn n1/2 logn =+∞. In this paper, we confirm this conjecture by giving a much more stronger result, i.e., limsup n→∞ π2 16 n 2 −bn n ≥ π 4 . 2020 Mathematics Subject Classification. 11B13, 11B75. Manuscript received 3rd August 2020, revised 19th August 2020, accepted 20th August 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Green’s problem on additive complements of the squares\",\"authors\":\"Yuchen Ding\",\"doi\":\"10.5802/crmath.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A and B be two subsets of the nonnegative integers. We call A and B additive complements if all sufficiently large integers n can be written as a +b, where a ∈ A and b ∈ B . Let S = {12,22,32, · · ·} be the set of all square numbers. Ben Green was interested in the additive complement of S. He asked whether there is an additive complement B = {bn }n=1 ⊆Nwhich satisfies bn = π 2 16 n 2+o(n2). Recently, Chen and Fang proved that if B is such an additive complement, then limsup n→∞ π2 16 n 2 −bn n1/2 logn ≥ √ 2 π 1 log4 . They further conjectured that limsup n→∞ π2 16 n 2 −bn n1/2 logn =+∞. In this paper, we confirm this conjecture by giving a much more stronger result, i.e., limsup n→∞ π2 16 n 2 −bn n ≥ π 4 . 2020 Mathematics Subject Classification. 11B13, 11B75. Manuscript received 3rd August 2020, revised 19th August 2020, accepted 20th August 2020.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/crmath.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设A和B是非负整数的两个子集。如果所有足够大的整数n都可以写成A + B,其中A∈A, B∈B,我们称A和B为可加补数。设S ={12,22,32,···}为所有平方数的集合。Ben Green对s的加性补很感兴趣,他问是否存在一个B = {bn}n=1的可加性补,满足bn = π 2 16 n2 +o(n2)。最近,Chen和Fang证明了如果B是这样的可加补,则limsup n→∞π2 16 n 2−bn n /2 logn≥√2 π 1 log4。他们进一步推测limsup n→∞π2 16 n 2 - bn n /2 logn =+∞。在本文中,我们给出了一个更强的结果,即limsup n→∞π2 16 n 2−bn n≥π 4,从而证实了这个猜想。2020数学学科分类。11B13, 11B75。2020年8月3日收稿,2020年8月19日改稿,2020年8月20日收稿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Green’s problem on additive complements of the squares
Let A and B be two subsets of the nonnegative integers. We call A and B additive complements if all sufficiently large integers n can be written as a +b, where a ∈ A and b ∈ B . Let S = {12,22,32, · · ·} be the set of all square numbers. Ben Green was interested in the additive complement of S. He asked whether there is an additive complement B = {bn }n=1 ⊆Nwhich satisfies bn = π 2 16 n 2+o(n2). Recently, Chen and Fang proved that if B is such an additive complement, then limsup n→∞ π2 16 n 2 −bn n1/2 logn ≥ √ 2 π 1 log4 . They further conjectured that limsup n→∞ π2 16 n 2 −bn n1/2 logn =+∞. In this paper, we confirm this conjecture by giving a much more stronger result, i.e., limsup n→∞ π2 16 n 2 −bn n ≥ π 4 . 2020 Mathematics Subject Classification. 11B13, 11B75. Manuscript received 3rd August 2020, revised 19th August 2020, accepted 20th August 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信