{"title":"关于相对指数和概率复杂度类","authors":"Hans Heller","doi":"10.1016/S0019-9958(86)80012-2","DOIUrl":null,"url":null,"abstract":"<div><p>An oracle <em>X</em> is constructed such that the exponential complexity class <em>Δ</em><sup>EP,<em>X</em></sup><sub>2</sub> equals the probabilistic class R(R(<em>X</em>)). This shows that it will be difficult to prove that <em>Δ</em><sup>EP</sup><sub>2</sub> is different from R(R), although it seems very unlikely that these two classes are equal. The result subsumes several known results about relativized computations:</p><ul><li><span>(i)</span><span><p>the existence of relativized polynomial hierarchies extending two levels (Long, T., 1978, Dissertation, Purdue Univ., Lafayette, Ind.; Heller, H., 1984(a), <em>SIAM J. Comput.</em> <strong>13</strong>, 717–725; Heller, H., 1984(b), <em>Math. Systems Theory</em> <strong>17</strong>, 71–84);</p></span></li><li><span>(ii)</span><span><p>the existence of an oracle <em>X</em> such that BPP(<em>X</em>) ⊄ <em>Δ<sup>P,X</sup></em><sub>2</sub> (Stockmeyer, L., 1983, “Proc. 15th STOC” pp. 118–126),</p></span></li><li><span>(iii)</span><span><p>the existence of an oracle <em>X</em> such that NP(<em>X</em>) is polynomially Turing reducible to a sparse set (Wilson, C., 1983, “Proc. 24th FOCS,”, pp. 329–334; Immerman, N., and Mahaney, S., 1983, “Conference on Computational Complexity Theory,” Santa Barbara, March 21–25).</p></span></li></ul><p>The result shows possible inclusion relations for nonrelativized complexity classes and points out that certain results about probabilistic complexity classes and about polynomial size circuits cannot be improved unless methods are applied which do not relativize.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1986-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80012-2","citationCount":"79","resultStr":"{\"title\":\"On relativized exponential and probabilistic complexity classes\",\"authors\":\"Hans Heller\",\"doi\":\"10.1016/S0019-9958(86)80012-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An oracle <em>X</em> is constructed such that the exponential complexity class <em>Δ</em><sup>EP,<em>X</em></sup><sub>2</sub> equals the probabilistic class R(R(<em>X</em>)). This shows that it will be difficult to prove that <em>Δ</em><sup>EP</sup><sub>2</sub> is different from R(R), although it seems very unlikely that these two classes are equal. The result subsumes several known results about relativized computations:</p><ul><li><span>(i)</span><span><p>the existence of relativized polynomial hierarchies extending two levels (Long, T., 1978, Dissertation, Purdue Univ., Lafayette, Ind.; Heller, H., 1984(a), <em>SIAM J. Comput.</em> <strong>13</strong>, 717–725; Heller, H., 1984(b), <em>Math. Systems Theory</em> <strong>17</strong>, 71–84);</p></span></li><li><span>(ii)</span><span><p>the existence of an oracle <em>X</em> such that BPP(<em>X</em>) ⊄ <em>Δ<sup>P,X</sup></em><sub>2</sub> (Stockmeyer, L., 1983, “Proc. 15th STOC” pp. 118–126),</p></span></li><li><span>(iii)</span><span><p>the existence of an oracle <em>X</em> such that NP(<em>X</em>) is polynomially Turing reducible to a sparse set (Wilson, C., 1983, “Proc. 24th FOCS,”, pp. 329–334; Immerman, N., and Mahaney, S., 1983, “Conference on Computational Complexity Theory,” Santa Barbara, March 21–25).</p></span></li></ul><p>The result shows possible inclusion relations for nonrelativized complexity classes and points out that certain results about probabilistic complexity classes and about polynomial size circuits cannot be improved unless methods are applied which do not relativize.</p></div>\",\"PeriodicalId\":38164,\"journal\":{\"name\":\"信息与控制\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80012-2\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息与控制\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019995886800122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995886800122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On relativized exponential and probabilistic complexity classes
An oracle X is constructed such that the exponential complexity class ΔEP,X2 equals the probabilistic class R(R(X)). This shows that it will be difficult to prove that ΔEP2 is different from R(R), although it seems very unlikely that these two classes are equal. The result subsumes several known results about relativized computations:
(i)
the existence of relativized polynomial hierarchies extending two levels (Long, T., 1978, Dissertation, Purdue Univ., Lafayette, Ind.; Heller, H., 1984(a), SIAM J. Comput.13, 717–725; Heller, H., 1984(b), Math. Systems Theory17, 71–84);
(ii)
the existence of an oracle X such that BPP(X) ⊄ ΔP,X2 (Stockmeyer, L., 1983, “Proc. 15th STOC” pp. 118–126),
(iii)
the existence of an oracle X such that NP(X) is polynomially Turing reducible to a sparse set (Wilson, C., 1983, “Proc. 24th FOCS,”, pp. 329–334; Immerman, N., and Mahaney, S., 1983, “Conference on Computational Complexity Theory,” Santa Barbara, March 21–25).
The result shows possible inclusion relations for nonrelativized complexity classes and points out that certain results about probabilistic complexity classes and about polynomial size circuits cannot be improved unless methods are applied which do not relativize.