R. Kaul, P. Ganesh, M. O. Ittoop, A. Nath, Aniruddha Kumar, R. Bhatt, Arun Kumar
{"title":"用2.5 kW连续co2激光对D9合金与AISI 316M不锈钢异种焊缝进行显微组织表征","authors":"R. Kaul, P. Ganesh, M. O. Ittoop, A. Nath, Aniruddha Kumar, R. Bhatt, Arun Kumar","doi":"10.1080/0898150021000014083","DOIUrl":null,"url":null,"abstract":"The dissimilar weld, a fuel clad tube (D9 alloy) and an end plug made of AISI 316M forms a part of the fuel pin in the 500 MW Indian Prototype Fast Breeder Reactor (PFBR). The present study aimed at the development of a crack resistant microstructure of the dissimilar weld by optimisation of 2.5 kW CO 2 laser welding parameters. The D9 alloy, because of its low Cr eq /Ni eq ratio (close to 1), solidified first as primary austenite which makes its welds particularly susceptible to solidification cracking. In this study, the primary mode of solidification in the fusion zone was modulated by controlling the relative degree of fusion of the fuel clad tube and the end plug. A defect free weld with predominantly a primary ferrite mode of solidification was obtained by optimising laser parameters and displacing the focused laser beam towards the end plug side to achieve a greater contribution of end plug material to the fusion zone. The formation of a crater and associated defects at the termination site of lase...","PeriodicalId":49918,"journal":{"name":"Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Microstructural characterisation of a dissimilar weld of alloy D9 and AISI 316M stainless steel produced using a 2.5 kW CW CO 2 laser\",\"authors\":\"R. Kaul, P. Ganesh, M. O. Ittoop, A. Nath, Aniruddha Kumar, R. Bhatt, Arun Kumar\",\"doi\":\"10.1080/0898150021000014083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dissimilar weld, a fuel clad tube (D9 alloy) and an end plug made of AISI 316M forms a part of the fuel pin in the 500 MW Indian Prototype Fast Breeder Reactor (PFBR). The present study aimed at the development of a crack resistant microstructure of the dissimilar weld by optimisation of 2.5 kW CO 2 laser welding parameters. The D9 alloy, because of its low Cr eq /Ni eq ratio (close to 1), solidified first as primary austenite which makes its welds particularly susceptible to solidification cracking. In this study, the primary mode of solidification in the fusion zone was modulated by controlling the relative degree of fusion of the fuel clad tube and the end plug. A defect free weld with predominantly a primary ferrite mode of solidification was obtained by optimising laser parameters and displacing the focused laser beam towards the end plug side to achieve a greater contribution of end plug material to the fusion zone. The formation of a crater and associated defects at the termination site of lase...\",\"PeriodicalId\":49918,\"journal\":{\"name\":\"Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/0898150021000014083\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/0898150021000014083","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructural characterisation of a dissimilar weld of alloy D9 and AISI 316M stainless steel produced using a 2.5 kW CW CO 2 laser
The dissimilar weld, a fuel clad tube (D9 alloy) and an end plug made of AISI 316M forms a part of the fuel pin in the 500 MW Indian Prototype Fast Breeder Reactor (PFBR). The present study aimed at the development of a crack resistant microstructure of the dissimilar weld by optimisation of 2.5 kW CO 2 laser welding parameters. The D9 alloy, because of its low Cr eq /Ni eq ratio (close to 1), solidified first as primary austenite which makes its welds particularly susceptible to solidification cracking. In this study, the primary mode of solidification in the fusion zone was modulated by controlling the relative degree of fusion of the fuel clad tube and the end plug. A defect free weld with predominantly a primary ferrite mode of solidification was obtained by optimising laser parameters and displacing the focused laser beam towards the end plug side to achieve a greater contribution of end plug material to the fusion zone. The formation of a crater and associated defects at the termination site of lase...
期刊介绍:
Lasers in Engineering publishes original (primary) research articles, reviews, short communications and letters on all aspects relating to the application of lasers in the many different branches of engineering and related disciplines.
The topics covered by Lasers in Engineering are the use of lasers: in sensors or measuring and for mapping devices; in electrocomponent fabrication; for materials processing; as integral parts of production assemblies; within the fields of biotechnology and bioengineering; in micro- and nanofabrication; as well as the materials and processing aspects of techniques such as cutting, drilling, marking, cladding, additive manufacturing (AM), alloying, welding and surface treatment and engineering.
Lasers in Engineering presents a balanced account of future developments, fundamental aspects and industrial innovations driven by the deployment of lasers. Modern technology has a vitally important role to play in meeting the increasingly stringent demands made on material and production systems. Lasers in Engineering provides a readily accessible medium for the rapid reporting of new knowledge, and technological and scientific advances in these areas.