{"title":"差分脉冲伏安法作为跟踪氢氯噻嗪电解降解的替代方法","authors":"M. Khanfar","doi":"10.48103/jjeci492021","DOIUrl":null,"url":null,"abstract":"This study aims to compare differential pulse voltammetry as a tracking method with chromatography and photometry. The three methods were used to track the degradation of the model compound hydrochlorothiazide (HCT) where 250ml of 0.50mM HCT solution (pH of 3.50 and ionic strength of 0.010M) was electrolyzed with 50.0mAmp constant current. The degradation process demonstrated great fit (R2 >0.99) with pseudo-first-order kinetics when the three tracking methods were utilized. However, different rate constants were reported for these methods: 0.032min-1, 0.016 min-1, and 0.0052min-1 for the chromatographic, photometric, and voltammetric techniques, respectively. The observed variation was attributed to the nature of the utilized probing methods. The differential pulse voltammetry is promising as an electrolytic decomposition tracking method; however, the working probe to target pollutants needs to be improved.","PeriodicalId":23539,"journal":{"name":"Volume 1, Issue 3","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Pulse Voltammetry as an Alternative Method for Tracking Hydrochlorothiazide Electrolytic Degradation\",\"authors\":\"M. Khanfar\",\"doi\":\"10.48103/jjeci492021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to compare differential pulse voltammetry as a tracking method with chromatography and photometry. The three methods were used to track the degradation of the model compound hydrochlorothiazide (HCT) where 250ml of 0.50mM HCT solution (pH of 3.50 and ionic strength of 0.010M) was electrolyzed with 50.0mAmp constant current. The degradation process demonstrated great fit (R2 >0.99) with pseudo-first-order kinetics when the three tracking methods were utilized. However, different rate constants were reported for these methods: 0.032min-1, 0.016 min-1, and 0.0052min-1 for the chromatographic, photometric, and voltammetric techniques, respectively. The observed variation was attributed to the nature of the utilized probing methods. The differential pulse voltammetry is promising as an electrolytic decomposition tracking method; however, the working probe to target pollutants needs to be improved.\",\"PeriodicalId\":23539,\"journal\":{\"name\":\"Volume 1, Issue 3\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1, Issue 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48103/jjeci492021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1, Issue 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48103/jjeci492021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential Pulse Voltammetry as an Alternative Method for Tracking Hydrochlorothiazide Electrolytic Degradation
This study aims to compare differential pulse voltammetry as a tracking method with chromatography and photometry. The three methods were used to track the degradation of the model compound hydrochlorothiazide (HCT) where 250ml of 0.50mM HCT solution (pH of 3.50 and ionic strength of 0.010M) was electrolyzed with 50.0mAmp constant current. The degradation process demonstrated great fit (R2 >0.99) with pseudo-first-order kinetics when the three tracking methods were utilized. However, different rate constants were reported for these methods: 0.032min-1, 0.016 min-1, and 0.0052min-1 for the chromatographic, photometric, and voltammetric techniques, respectively. The observed variation was attributed to the nature of the utilized probing methods. The differential pulse voltammetry is promising as an electrolytic decomposition tracking method; however, the working probe to target pollutants needs to be improved.