{"title":"基于确定性感知矩阵的稀疏协方差矩阵压缩感知研究","authors":"Alihan Kaplan, V. Pohl, Dae Gwan Lee","doi":"10.1109/ICASSP.2018.8461312","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of determining the sparse covariance matrix <tex>$\\mathbf{X}$</tex> of an unknown data vector <tex>$\\pmb{x}$</tex> by observing the covariance matrix <tex>$\\mathbf{Y}$</tex> of a compressive measurement vector <tex>$\\pmb{y}=\\mathbf{A}\\pmb{x}$</tex>. We construct deterministic sensing matrices <tex>$\\mathbf{A}$</tex> for which the recovery of a <tex>$k$</tex> -sparse covariance matrix <tex>$\\mathbf{X}$</tex> from <tex>$m$</tex> values of <tex>$\\mathbf{Y}$</tex> is guaranteed with high probability. In particular, we show that the number of measurements <tex>$m$</tex> scales linearly with the sparsity <tex>$k$</tex>.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"28 1","pages":"4019-4023"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On Compressive Sensing of Sparse Covariance Matrices Using Deterministic Sensing Matrices\",\"authors\":\"Alihan Kaplan, V. Pohl, Dae Gwan Lee\",\"doi\":\"10.1109/ICASSP.2018.8461312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of determining the sparse covariance matrix <tex>$\\\\mathbf{X}$</tex> of an unknown data vector <tex>$\\\\pmb{x}$</tex> by observing the covariance matrix <tex>$\\\\mathbf{Y}$</tex> of a compressive measurement vector <tex>$\\\\pmb{y}=\\\\mathbf{A}\\\\pmb{x}$</tex>. We construct deterministic sensing matrices <tex>$\\\\mathbf{A}$</tex> for which the recovery of a <tex>$k$</tex> -sparse covariance matrix <tex>$\\\\mathbf{X}$</tex> from <tex>$m$</tex> values of <tex>$\\\\mathbf{Y}$</tex> is guaranteed with high probability. In particular, we show that the number of measurements <tex>$m$</tex> scales linearly with the sparsity <tex>$k$</tex>.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"28 1\",\"pages\":\"4019-4023\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Compressive Sensing of Sparse Covariance Matrices Using Deterministic Sensing Matrices
This paper considers the problem of determining the sparse covariance matrix $\mathbf{X}$ of an unknown data vector $\pmb{x}$ by observing the covariance matrix $\mathbf{Y}$ of a compressive measurement vector $\pmb{y}=\mathbf{A}\pmb{x}$. We construct deterministic sensing matrices $\mathbf{A}$ for which the recovery of a $k$ -sparse covariance matrix $\mathbf{X}$ from $m$ values of $\mathbf{Y}$ is guaranteed with high probability. In particular, we show that the number of measurements $m$ scales linearly with the sparsity $k$.