混合小波-后置- gp模式在印度阿南德地区降雨预报中的应用

V. Dabhi, S. Chaudhary
{"title":"混合小波-后置- gp模式在印度阿南德地区降雨预报中的应用","authors":"V. Dabhi, S. Chaudhary","doi":"10.1155/2014/717803","DOIUrl":null,"url":null,"abstract":"An accurate prediction of rainfall is crucial for national economy and management of water resources. The variability of rainfall in both time and space makes the rainfall prediction a challenging task. The present work investigates the applicability of a hybrid wavelet-postfix-GP model for daily rainfall prediction of Anand region using meteorological variables. The wavelet analysis is used as a data preprocessing technique to remove the stochastic (noise) component from the original time series of each meteorological variable. The Postfix-GP, a GP variant, and ANN are then employed to develop models for rainfall using newly generated subseries of meteorological variables.The developed models are then used for rainfall prediction.The out-of-sample prediction performance of Postfix-GP and ANN models is compared using statistical measures. The results are comparable and suggest that Postfix-GP could be explored as an alternative tool for rainfall prediction.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"32 1","pages":"717803:1-717803:11"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Hybrid Wavelet-Postfix-GP Model for Rainfall Prediction of Anand Region of India\",\"authors\":\"V. Dabhi, S. Chaudhary\",\"doi\":\"10.1155/2014/717803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate prediction of rainfall is crucial for national economy and management of water resources. The variability of rainfall in both time and space makes the rainfall prediction a challenging task. The present work investigates the applicability of a hybrid wavelet-postfix-GP model for daily rainfall prediction of Anand region using meteorological variables. The wavelet analysis is used as a data preprocessing technique to remove the stochastic (noise) component from the original time series of each meteorological variable. The Postfix-GP, a GP variant, and ANN are then employed to develop models for rainfall using newly generated subseries of meteorological variables.The developed models are then used for rainfall prediction.The out-of-sample prediction performance of Postfix-GP and ANN models is compared using statistical measures. The results are comparable and suggest that Postfix-GP could be explored as an alternative tool for rainfall prediction.\",\"PeriodicalId\":7253,\"journal\":{\"name\":\"Adv. Artif. Intell.\",\"volume\":\"32 1\",\"pages\":\"717803:1-717803:11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/717803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/717803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

准确的降水预报对国民经济和水资源管理至关重要。降雨在时间和空间上的变异性使降雨预测成为一项具有挑战性的任务。本文研究了小波-后位- gp混合模型在阿南德地区日降水预报中的适用性。采用小波分析作为数据预处理技术,从各气象变量的原始时间序列中去除随机(噪声)成分。然后,利用新生成的气象变量子序列,利用GP变体Postfix-GP和人工神经网络建立降雨模型。然后将开发的模型用于降雨预测。利用统计度量比较了fix- gp和ANN模型的样本外预测性能。结果具有可比性,表明Postfix-GP可以作为降雨预测的替代工具进行探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Wavelet-Postfix-GP Model for Rainfall Prediction of Anand Region of India
An accurate prediction of rainfall is crucial for national economy and management of water resources. The variability of rainfall in both time and space makes the rainfall prediction a challenging task. The present work investigates the applicability of a hybrid wavelet-postfix-GP model for daily rainfall prediction of Anand region using meteorological variables. The wavelet analysis is used as a data preprocessing technique to remove the stochastic (noise) component from the original time series of each meteorological variable. The Postfix-GP, a GP variant, and ANN are then employed to develop models for rainfall using newly generated subseries of meteorological variables.The developed models are then used for rainfall prediction.The out-of-sample prediction performance of Postfix-GP and ANN models is compared using statistical measures. The results are comparable and suggest that Postfix-GP could be explored as an alternative tool for rainfall prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信