有限集上函数的半迭代

P. Kozyra
{"title":"有限集上函数的半迭代","authors":"P. Kozyra","doi":"10.12921/cmst.2018.0000027","DOIUrl":null,"url":null,"abstract":"Four algorithms determining all functional square roots (half iterates) and seven algorithms finding one functional square root of any function f : X → X defined on a finite set X , if these square roots exist, are presented herein. Time efficiency of these algorithms depending on the complexity of examined functions is compared and justification of correctness is given. Moreover, theorems which make finding half iterates possible in some cases or facilitate this task are formulated.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"1 1","pages":"187-209"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Half Iterates of Functions Defined on Finite Sets\",\"authors\":\"P. Kozyra\",\"doi\":\"10.12921/cmst.2018.0000027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Four algorithms determining all functional square roots (half iterates) and seven algorithms finding one functional square root of any function f : X → X defined on a finite set X , if these square roots exist, are presented herein. Time efficiency of these algorithms depending on the complexity of examined functions is compared and justification of correctness is given. Moreover, theorems which make finding half iterates possible in some cases or facilitate this task are formulated.\",\"PeriodicalId\":10561,\"journal\":{\"name\":\"computational methods in science and technology\",\"volume\":\"1 1\",\"pages\":\"187-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"computational methods in science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/cmst.2018.0000027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/cmst.2018.0000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了确定有限集合X上定义的任意函数f: X→X的所有泛函平方根的四种算法(半迭代)和求函数f: X→X的一个泛函平方根的七种算法,如果这些平方根存在。比较了这些算法的时间效率随检测函数复杂度的变化,并给出了正确性的证明。此外,还提出了在某些情况下可能找到半迭代的定理或简化此任务的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Half Iterates of Functions Defined on Finite Sets
Four algorithms determining all functional square roots (half iterates) and seven algorithms finding one functional square root of any function f : X → X defined on a finite set X , if these square roots exist, are presented herein. Time efficiency of these algorithms depending on the complexity of examined functions is compared and justification of correctness is given. Moreover, theorems which make finding half iterates possible in some cases or facilitate this task are formulated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信