{"title":"论Seidel拉普拉斯矩阵与图的能量","authors":"N. Yalçın","doi":"10.2478/ausi-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the Seidel Laplacian spectrum of graphs are determined. Then new bounds are presented for the Seidel Laplacian energy of regular graphs and graphs by using their Seidel Laplacian spectrum and other techniques. Further, the Seidel Laplacian energy of specific graphs are computed.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"3 1","pages":"104 - 118"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Seidel Laplacian matrix and energy of graphs\",\"authors\":\"N. Yalçın\",\"doi\":\"10.2478/ausi-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, the Seidel Laplacian spectrum of graphs are determined. Then new bounds are presented for the Seidel Laplacian energy of regular graphs and graphs by using their Seidel Laplacian spectrum and other techniques. Further, the Seidel Laplacian energy of specific graphs are computed.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"3 1\",\"pages\":\"104 - 118\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2022-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract In this work, the Seidel Laplacian spectrum of graphs are determined. Then new bounds are presented for the Seidel Laplacian energy of regular graphs and graphs by using their Seidel Laplacian spectrum and other techniques. Further, the Seidel Laplacian energy of specific graphs are computed.