直接梯度计算:简单和变化容忍芯片上的神经网络训练方法

Hyungyo Kim, Joon Hwang, D. Kwon, Jangsaeng Kim, Min-Kyu Park, Ji-Young Im, Byung-Gook Park, Jong-Ho Lee
{"title":"直接梯度计算:简单和变化容忍芯片上的神经网络训练方法","authors":"Hyungyo Kim, Joon Hwang, D. Kwon, Jangsaeng Kim, Min-Kyu Park, Ji-Young Im, Byung-Gook Park, Jong-Ho Lee","doi":"10.1002/aisy.202100064","DOIUrl":null,"url":null,"abstract":"On‐chip training of neural networks (NNs) is regarded as a promising training method for neuromorphic systems with analog synaptic devices. Herein, a novel on‐chip training method called direct gradient calculation (DGC) is proposed to substitute conventional backpropagation (BP). In this method, the gradients of a cost function with respect to the weights are calculated directly by sequentially applying a small temporal change to each weight and then measuring the change in cost value. DGC achieves a similar accuracy to that of BP while performing a handwritten digit classification task, validating its training feasibility. In particular, DGC can be applied to analog hardware‐based convolutional NNs (CNNs), which is considered to be a challenging task, enabling appropriate on‐chip training. A hybrid method is also proposed that efficiently combines DGC and BP for training CNNs, and the method achieves a similar accuracy to that of BP and DGC while enhancing the training speed. Furthermore, networks utilizing DGC maintain a higher level of accuracy than those using BP in the presence of variations in hardware (such as synaptic device conductance and neuron circuit component variations) while requiring fewer circuit components.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Direct Gradient Calculation: Simple and Variation‐Tolerant On‐Chip Training Method for Neural Networks\",\"authors\":\"Hyungyo Kim, Joon Hwang, D. Kwon, Jangsaeng Kim, Min-Kyu Park, Ji-Young Im, Byung-Gook Park, Jong-Ho Lee\",\"doi\":\"10.1002/aisy.202100064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On‐chip training of neural networks (NNs) is regarded as a promising training method for neuromorphic systems with analog synaptic devices. Herein, a novel on‐chip training method called direct gradient calculation (DGC) is proposed to substitute conventional backpropagation (BP). In this method, the gradients of a cost function with respect to the weights are calculated directly by sequentially applying a small temporal change to each weight and then measuring the change in cost value. DGC achieves a similar accuracy to that of BP while performing a handwritten digit classification task, validating its training feasibility. In particular, DGC can be applied to analog hardware‐based convolutional NNs (CNNs), which is considered to be a challenging task, enabling appropriate on‐chip training. A hybrid method is also proposed that efficiently combines DGC and BP for training CNNs, and the method achieves a similar accuracy to that of BP and DGC while enhancing the training speed. Furthermore, networks utilizing DGC maintain a higher level of accuracy than those using BP in the presence of variations in hardware (such as synaptic device conductance and neuron circuit component variations) while requiring fewer circuit components.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202100064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202100064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在芯片上训练神经网络(NNs)被认为是具有模拟突触装置的神经形态系统的一种很有前途的训练方法。本文提出了一种新的片上训练方法,称为直接梯度计算(DGC),以取代传统的反向传播(BP)方法。在这种方法中,成本函数相对于权重的梯度是通过顺序地对每个权重施加一个小的时间变化,然后测量成本值的变化来直接计算的。在执行手写数字分类任务时,DGC达到了与BP相似的准确率,验证了其训练的可行性。特别是,DGC可以应用于基于模拟硬件的卷积神经网络(cnn),这被认为是一项具有挑战性的任务,可以实现适当的片上训练。提出了一种将DGC和BP有效地结合起来训练cnn的混合方法,该方法在提高训练速度的同时获得了与BP和DGC相似的精度。此外,在硬件变化(如突触装置电导和神经元电路组件变化)的情况下,使用DGC的网络比使用BP的网络保持更高的准确性,同时需要更少的电路组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Gradient Calculation: Simple and Variation‐Tolerant On‐Chip Training Method for Neural Networks
On‐chip training of neural networks (NNs) is regarded as a promising training method for neuromorphic systems with analog synaptic devices. Herein, a novel on‐chip training method called direct gradient calculation (DGC) is proposed to substitute conventional backpropagation (BP). In this method, the gradients of a cost function with respect to the weights are calculated directly by sequentially applying a small temporal change to each weight and then measuring the change in cost value. DGC achieves a similar accuracy to that of BP while performing a handwritten digit classification task, validating its training feasibility. In particular, DGC can be applied to analog hardware‐based convolutional NNs (CNNs), which is considered to be a challenging task, enabling appropriate on‐chip training. A hybrid method is also proposed that efficiently combines DGC and BP for training CNNs, and the method achieves a similar accuracy to that of BP and DGC while enhancing the training speed. Furthermore, networks utilizing DGC maintain a higher level of accuracy than those using BP in the presence of variations in hardware (such as synaptic device conductance and neuron circuit component variations) while requiring fewer circuit components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信