无关联机争用解决方案

Hu Fu, P. Lu, Zhihao Gavin Tang, Abner Turkieltaub, Hongxun Wu, Jinzhao Wu, Qianfan Zhang
{"title":"无关联机争用解决方案","authors":"Hu Fu, P. Lu, Zhihao Gavin Tang, Abner Turkieltaub, Hongxun Wu, Jinzhao Wu, Qianfan Zhang","doi":"10.1137/1.9781611977066.20","DOIUrl":null,"url":null,"abstract":"Contention resolution schemes (CRSs) are powerful tools for obtaining\"ex post feasible\"solutions from candidates that are drawn from\"ex ante feasible\"distributions. Online contention resolution schemes (OCRSs), the online version, have found myriad applications in Bayesian and stochastic problems, such as prophet inequalities and stochastic probing. When the ex ante distribution is unknown, it was unknown whether good CRSs/OCRSs exist with no sample (in which case the scheme is oblivious) or few samples from the distribution. In this work, we give a simple $\\frac{1}{e}$-selectable oblivious single item OCRS by mixing two simple schemes evenly, and show, via a Ramsey theory argument, that it is optimal. On the negative side, we show that no CRS or OCRS with $O(1)$ samples can be $\\Omega(1)$-balanced/selectable (i.e., preserve every active candidate with a constant probability) for graphic or transversal matroids.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"82 6 1","pages":"268-278"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Oblivious Online Contention Resolution Schemes\",\"authors\":\"Hu Fu, P. Lu, Zhihao Gavin Tang, Abner Turkieltaub, Hongxun Wu, Jinzhao Wu, Qianfan Zhang\",\"doi\":\"10.1137/1.9781611977066.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contention resolution schemes (CRSs) are powerful tools for obtaining\\\"ex post feasible\\\"solutions from candidates that are drawn from\\\"ex ante feasible\\\"distributions. Online contention resolution schemes (OCRSs), the online version, have found myriad applications in Bayesian and stochastic problems, such as prophet inequalities and stochastic probing. When the ex ante distribution is unknown, it was unknown whether good CRSs/OCRSs exist with no sample (in which case the scheme is oblivious) or few samples from the distribution. In this work, we give a simple $\\\\frac{1}{e}$-selectable oblivious single item OCRS by mixing two simple schemes evenly, and show, via a Ramsey theory argument, that it is optimal. On the negative side, we show that no CRS or OCRS with $O(1)$ samples can be $\\\\Omega(1)$-balanced/selectable (i.e., preserve every active candidate with a constant probability) for graphic or transversal matroids.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"82 6 1\",\"pages\":\"268-278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611977066.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

争用解决方案(CRSs)是从“事前可行”分布中提取的候选方案中获得“事后可行”解决方案的强大工具。在线争用解决方案在贝叶斯和随机问题(如预言不等式和随机探测)中得到了广泛的应用。当先验分布未知时,不知道是否存在没有样本(在这种情况下,方案是无关的)或分布中只有少量样本的良好CRSs/ CRSs。在这项工作中,我们通过均匀混合两种简单方案给出了一个简单的$\frac{1}{e}$ -可选择遗忘单项目OCRS,并通过拉姆齐理论论证证明了它是最优的。在消极方面,我们表明,对于图形或横向拟阵,没有具有$O(1)$样本的CRS或OCRS可以$\Omega(1)$ -平衡/可选(即,以恒定的概率保留每个活跃候选)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oblivious Online Contention Resolution Schemes
Contention resolution schemes (CRSs) are powerful tools for obtaining"ex post feasible"solutions from candidates that are drawn from"ex ante feasible"distributions. Online contention resolution schemes (OCRSs), the online version, have found myriad applications in Bayesian and stochastic problems, such as prophet inequalities and stochastic probing. When the ex ante distribution is unknown, it was unknown whether good CRSs/OCRSs exist with no sample (in which case the scheme is oblivious) or few samples from the distribution. In this work, we give a simple $\frac{1}{e}$-selectable oblivious single item OCRS by mixing two simple schemes evenly, and show, via a Ramsey theory argument, that it is optimal. On the negative side, we show that no CRS or OCRS with $O(1)$ samples can be $\Omega(1)$-balanced/selectable (i.e., preserve every active candidate with a constant probability) for graphic or transversal matroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信