解释预测因子对排名的影响:以各州排名为例

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
A. E. Rodriguez, A. Ozkul, Brian Marks
{"title":"解释预测因子对排名的影响:以各州排名为例","authors":"A. E. Rodriguez, A. Ozkul, Brian Marks","doi":"10.1080/2573234X.2019.1605312","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study presents an approach that can be used to identify important predictors used incalculating performance rankings and gauge their sensitivities. Random Forests is a powerful machine learning tool well known for their predictive powers. It is especially suited to broach the small-n, large-p problem usually found in rankings procedures. However, random forests are unable to shed any insight intohow the examined predictors affect individual entries in the ranked set. A procedure calledLocal Interpretable Model-Agnostic Explanations (LIME) enables decision-makers to discernthe most important individual variables and their relative contributions to the outcome ofeach element in the ranked set. To explain this procedure, we use the 2016 edition of theALEC-Laffer State Rankings data. With the method proposed in this study, a state’s policymakerswould have specific knowledge on how to improve their state’s ranking. This method is ofgeneral applicability to any policy domain.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":"18 1","pages":"135 - 143"},"PeriodicalIF":1.7000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explaining impact of predictors in rankings: an illustrative case of states rankings\",\"authors\":\"A. E. Rodriguez, A. Ozkul, Brian Marks\",\"doi\":\"10.1080/2573234X.2019.1605312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study presents an approach that can be used to identify important predictors used incalculating performance rankings and gauge their sensitivities. Random Forests is a powerful machine learning tool well known for their predictive powers. It is especially suited to broach the small-n, large-p problem usually found in rankings procedures. However, random forests are unable to shed any insight intohow the examined predictors affect individual entries in the ranked set. A procedure calledLocal Interpretable Model-Agnostic Explanations (LIME) enables decision-makers to discernthe most important individual variables and their relative contributions to the outcome ofeach element in the ranked set. To explain this procedure, we use the 2016 edition of theALEC-Laffer State Rankings data. With the method proposed in this study, a state’s policymakerswould have specific knowledge on how to improve their state’s ranking. This method is ofgeneral applicability to any policy domain.\",\"PeriodicalId\":36417,\"journal\":{\"name\":\"Journal of Business Analytics\",\"volume\":\"18 1\",\"pages\":\"135 - 143\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2573234X.2019.1605312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2019.1605312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种方法,可用于识别用于计算绩效排名的重要预测因子,并衡量其敏感性。随机森林是一种强大的机器学习工具,以其预测能力而闻名。它特别适合处理排序过程中经常出现的小n,大p问题。然而,随机森林无法揭示被检查的预测因子如何影响排名集中的单个条目。一个称为局部可解释模型不可知论解释(LIME)的过程使决策者能够识别最重要的个体变量及其对排名集中每个元素结果的相对贡献。为了解释这一过程,我们使用了2016年版的alec - laffer州排名数据。通过本研究提出的方法,一个州的政策制定者将对如何提高其州的排名有具体的了解。这种方法一般适用于任何策略领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explaining impact of predictors in rankings: an illustrative case of states rankings
ABSTRACT This study presents an approach that can be used to identify important predictors used incalculating performance rankings and gauge their sensitivities. Random Forests is a powerful machine learning tool well known for their predictive powers. It is especially suited to broach the small-n, large-p problem usually found in rankings procedures. However, random forests are unable to shed any insight intohow the examined predictors affect individual entries in the ranked set. A procedure calledLocal Interpretable Model-Agnostic Explanations (LIME) enables decision-makers to discernthe most important individual variables and their relative contributions to the outcome ofeach element in the ranked set. To explain this procedure, we use the 2016 edition of theALEC-Laffer State Rankings data. With the method proposed in this study, a state’s policymakerswould have specific knowledge on how to improve their state’s ranking. This method is ofgeneral applicability to any policy domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信