源具有最大最小期望长度的概率质量函数

Shivkumar K. Manickam
{"title":"源具有最大最小期望长度的概率质量函数","authors":"Shivkumar K. Manickam","doi":"10.1109/NCC.2019.8732264","DOIUrl":null,"url":null,"abstract":"Let <tex>$\\mathcal{P}_{n}$</tex> be the set of all probability mass functions (PMFs) <tex>$(p_{1},p_{2},\\ \\ldots, p_{n})$</tex> that satisfy <tex>$p_{i} > 0$</tex> for <tex>$1\\leq i\\leq n$</tex>. Define the minimum expected length function <tex>$\\mathcal{L}_{D}:\\mathcal{P}_{n}\\rightarrow \\mathbb{R}$</tex> such that <tex>$\\mathcal{L}_{D}(P)$</tex> is the minimum expected length of a prefix code, formed out of an alphabet of size D, for the discrete memoryless source having <tex>$P$</tex> as its source distribution. It is well-known that the function <tex>$\\mathcal{L}_{D}$</tex> attains its maximum value at the uniform distribution. Further, when <tex>$n$</tex> is of the form <tex>$D^{m}$</tex>, with <tex>$m$</tex> being a positive integer, PMFs other than the uniform distribution at which <tex>$\\mathcal{L}_{D}$</tex> attains its maximum value are known. However, a complete characterization of all such PMFs at which the minimum expected length function attains its maximum value has not been done so far. This is done in this paper.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"31 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability Mass Functions for which Sources have the Maximum Minimum Expected Length\",\"authors\":\"Shivkumar K. Manickam\",\"doi\":\"10.1109/NCC.2019.8732264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <tex>$\\\\mathcal{P}_{n}$</tex> be the set of all probability mass functions (PMFs) <tex>$(p_{1},p_{2},\\\\ \\\\ldots, p_{n})$</tex> that satisfy <tex>$p_{i} > 0$</tex> for <tex>$1\\\\leq i\\\\leq n$</tex>. Define the minimum expected length function <tex>$\\\\mathcal{L}_{D}:\\\\mathcal{P}_{n}\\\\rightarrow \\\\mathbb{R}$</tex> such that <tex>$\\\\mathcal{L}_{D}(P)$</tex> is the minimum expected length of a prefix code, formed out of an alphabet of size D, for the discrete memoryless source having <tex>$P$</tex> as its source distribution. It is well-known that the function <tex>$\\\\mathcal{L}_{D}$</tex> attains its maximum value at the uniform distribution. Further, when <tex>$n$</tex> is of the form <tex>$D^{m}$</tex>, with <tex>$m$</tex> being a positive integer, PMFs other than the uniform distribution at which <tex>$\\\\mathcal{L}_{D}$</tex> attains its maximum value are known. However, a complete characterization of all such PMFs at which the minimum expected length function attains its maximum value has not been done so far. This is done in this paper.\",\"PeriodicalId\":6870,\"journal\":{\"name\":\"2019 National Conference on Communications (NCC)\",\"volume\":\"31 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2019.8732264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$\mathcal{P}_{n}$为所有概率质量函数(pmf)的集合$(p_{1},p_{2},\ \ldots, p_{n})$满足$p_{i} > 0$对于$1\leq i\leq n$。定义最小期望长度函数$\mathcal{L}_{D}:\mathcal{P}_{n}\rightarrow \mathbb{R}$,使得$\mathcal{L}_{D}(P)$是前缀代码的最小期望长度,由大小为D的字母组成,对于具有$P$作为其源分布的离散无内存源。众所周知,函数$\mathcal{L}_{D}$在均匀分布时达到最大值。此外,当$n$的形式为$D^{m}$时,$m$为正整数,则除了$\mathcal{L}_{D}$达到最大值的均匀分布之外的pmf是已知的。然而,到目前为止,还没有对所有这些最小期望长度函数达到最大值的PMFs进行完整的表征。本文就是这样做的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability Mass Functions for which Sources have the Maximum Minimum Expected Length
Let $\mathcal{P}_{n}$ be the set of all probability mass functions (PMFs) $(p_{1},p_{2},\ \ldots, p_{n})$ that satisfy $p_{i} > 0$ for $1\leq i\leq n$. Define the minimum expected length function $\mathcal{L}_{D}:\mathcal{P}_{n}\rightarrow \mathbb{R}$ such that $\mathcal{L}_{D}(P)$ is the minimum expected length of a prefix code, formed out of an alphabet of size D, for the discrete memoryless source having $P$ as its source distribution. It is well-known that the function $\mathcal{L}_{D}$ attains its maximum value at the uniform distribution. Further, when $n$ is of the form $D^{m}$, with $m$ being a positive integer, PMFs other than the uniform distribution at which $\mathcal{L}_{D}$ attains its maximum value are known. However, a complete characterization of all such PMFs at which the minimum expected length function attains its maximum value has not been done so far. This is done in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信