{"title":"见证同粒子系统中的配对关联","authors":"C. Aksak, S. Turgut","doi":"10.26421/qic21.15-16-4","DOIUrl":null,"url":null,"abstract":"Quantum correlations and entanglement in identical-particle systems have been a puzzling question which has attracted vast interest and widely different approaches. Witness formalism developed first for entanglement measurement can be adopted to other kind of correlations. An approach is introduced by Kraus \\emph{et al.}, [Phys. Rev. A \\textbf{79}, 012306 (2009)] based on pairing correlations in fermionic systems and the use of witness formalism to detect pairing. In this contribution, a two-particle-annihilation operator is used for constructing a two-particle observable as a candidate witness for pairing correlations of both fermionic and bosonic systems. The corresponding separability bounds are also obtained. Two different types of separability definition are introduced for bosonic systems and the separability bounds associated with each type are discussed.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"7 1","pages":"1307-1319"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Witnessing pairing correlations in identical-particle systems\",\"authors\":\"C. Aksak, S. Turgut\",\"doi\":\"10.26421/qic21.15-16-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum correlations and entanglement in identical-particle systems have been a puzzling question which has attracted vast interest and widely different approaches. Witness formalism developed first for entanglement measurement can be adopted to other kind of correlations. An approach is introduced by Kraus \\\\emph{et al.}, [Phys. Rev. A \\\\textbf{79}, 012306 (2009)] based on pairing correlations in fermionic systems and the use of witness formalism to detect pairing. In this contribution, a two-particle-annihilation operator is used for constructing a two-particle observable as a candidate witness for pairing correlations of both fermionic and bosonic systems. The corresponding separability bounds are also obtained. Two different types of separability definition are introduced for bosonic systems and the separability bounds associated with each type are discussed.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"7 1\",\"pages\":\"1307-1319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/qic21.15-16-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic21.15-16-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Witnessing pairing correlations in identical-particle systems
Quantum correlations and entanglement in identical-particle systems have been a puzzling question which has attracted vast interest and widely different approaches. Witness formalism developed first for entanglement measurement can be adopted to other kind of correlations. An approach is introduced by Kraus \emph{et al.}, [Phys. Rev. A \textbf{79}, 012306 (2009)] based on pairing correlations in fermionic systems and the use of witness formalism to detect pairing. In this contribution, a two-particle-annihilation operator is used for constructing a two-particle observable as a candidate witness for pairing correlations of both fermionic and bosonic systems. The corresponding separability bounds are also obtained. Two different types of separability definition are introduced for bosonic systems and the separability bounds associated with each type are discussed.