利用CFD多孔盘尾流模型对Horns Rev 1海上风电场尾流效应进行GPU模拟

IF 1.5 Q4 ENERGY & FUELS
T. Uchida, Teppei Tanaka, Ryuta Shizui, Hiroto Ichikawa, Ryo Takayama, Kazuomi Yahagi, Ryoya Okubo
{"title":"利用CFD多孔盘尾流模型对Horns Rev 1海上风电场尾流效应进行GPU模拟","authors":"T. Uchida, Teppei Tanaka, Ryuta Shizui, Hiroto Ichikawa, Ryo Takayama, Kazuomi Yahagi, Ryoya Okubo","doi":"10.1177/0309524X221132003","DOIUrl":null,"url":null,"abstract":"To verify the effectiveness of the GPU simulation of wake effects at a large-scale offshore wind farm, we ran an in-house large-eddy simulation (LES) solver with a CFD porous disk wake model for the Horns Rev 1 wind farm. For this numerical research, we prepared the latest workstation equipped with a Xeon W-2265 CPU and an NVIDIA RTX A6000 GPU. We clarified that the calculation speed of the single GPU of the NVIDIA RTX A6000 is approximately 10 times faster than the calculation speed of the Xeon W-2265. Careful data analysis and visualization of the unsteady turbulent flow fields obtained in the current LES study suggest that the mutual interference of the wakes developed by wind turbines may frequently form a local speed-up region around wind turbines, located on the downstream side of large offshore wind farms.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"1 1","pages":"408 - 421"},"PeriodicalIF":1.5000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU simulation of wake effects at the Horns Rev 1 offshore wind farm using the CFD porous disk wake model\",\"authors\":\"T. Uchida, Teppei Tanaka, Ryuta Shizui, Hiroto Ichikawa, Ryo Takayama, Kazuomi Yahagi, Ryoya Okubo\",\"doi\":\"10.1177/0309524X221132003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To verify the effectiveness of the GPU simulation of wake effects at a large-scale offshore wind farm, we ran an in-house large-eddy simulation (LES) solver with a CFD porous disk wake model for the Horns Rev 1 wind farm. For this numerical research, we prepared the latest workstation equipped with a Xeon W-2265 CPU and an NVIDIA RTX A6000 GPU. We clarified that the calculation speed of the single GPU of the NVIDIA RTX A6000 is approximately 10 times faster than the calculation speed of the Xeon W-2265. Careful data analysis and visualization of the unsteady turbulent flow fields obtained in the current LES study suggest that the mutual interference of the wakes developed by wind turbines may frequently form a local speed-up region around wind turbines, located on the downstream side of large offshore wind farms.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"1 1\",\"pages\":\"408 - 421\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524X221132003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221132003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了验证GPU模拟大型海上风电场尾流效应的有效性,我们对Horns Rev 1风电场运行了一个基于CFD多孔盘尾流模型的内部大涡模拟(LES)求解器。为了进行数值研究,我们准备了配备至强W-2265 CPU和NVIDIA RTX A6000 GPU的最新工作站。我们澄清了NVIDIA RTX A6000单GPU的计算速度比至强W-2265的计算速度快了大约10倍。对当前LES研究中获得的非定常湍流流场的仔细数据分析和可视化表明,风力机发展的尾迹相互干扰可能经常在风力机周围形成局部加速区,位于大型海上风电场的下游侧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU simulation of wake effects at the Horns Rev 1 offshore wind farm using the CFD porous disk wake model
To verify the effectiveness of the GPU simulation of wake effects at a large-scale offshore wind farm, we ran an in-house large-eddy simulation (LES) solver with a CFD porous disk wake model for the Horns Rev 1 wind farm. For this numerical research, we prepared the latest workstation equipped with a Xeon W-2265 CPU and an NVIDIA RTX A6000 GPU. We clarified that the calculation speed of the single GPU of the NVIDIA RTX A6000 is approximately 10 times faster than the calculation speed of the Xeon W-2265. Careful data analysis and visualization of the unsteady turbulent flow fields obtained in the current LES study suggest that the mutual interference of the wakes developed by wind turbines may frequently form a local speed-up region around wind turbines, located on the downstream side of large offshore wind farms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信