土壤介质中时间分数型氡扩散方程分数阶的Crank-Nicolson近似

Q4 Mathematics
G. W. Shrimangale
{"title":"土壤介质中时间分数型氡扩散方程分数阶的Crank-Nicolson近似","authors":"G. W. Shrimangale","doi":"10.28919/jmcs/7342","DOIUrl":null,"url":null,"abstract":". The basic aim of this paper is to study the analysis for the Crank-Nicolson finite difference approximation for time fractional radon diffusion equation (TFRDE) in soil medium. The equation expresses the concentration of radon as function of space and time in soil medium. We discuss the stability and convergence of the scheme. Graphically the numerical solution of the test problem is carried out with the help of mathematical software Mathematica.","PeriodicalId":36607,"journal":{"name":"Journal of Mathematical and Computational Science","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crank-Nicolson approximation of fractional order for time fractional radon diffusion equation in soil medium\",\"authors\":\"G. W. Shrimangale\",\"doi\":\"10.28919/jmcs/7342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The basic aim of this paper is to study the analysis for the Crank-Nicolson finite difference approximation for time fractional radon diffusion equation (TFRDE) in soil medium. The equation expresses the concentration of radon as function of space and time in soil medium. We discuss the stability and convergence of the scheme. Graphically the numerical solution of the test problem is carried out with the help of mathematical software Mathematica.\",\"PeriodicalId\":36607,\"journal\":{\"name\":\"Journal of Mathematical and Computational Science\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/jmcs/7342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jmcs/7342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 本文的基本目的是研究土壤介质中时间分数型氡扩散方程的Crank-Nicolson有限差分近似分析。方程描述了氡在土壤介质中的浓度随时间和空间的变化。讨论了该方案的稳定性和收敛性。在数学软件Mathematica的帮助下,图形化地对测试问题进行了数值求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crank-Nicolson approximation of fractional order for time fractional radon diffusion equation in soil medium
. The basic aim of this paper is to study the analysis for the Crank-Nicolson finite difference approximation for time fractional radon diffusion equation (TFRDE) in soil medium. The equation expresses the concentration of radon as function of space and time in soil medium. We discuss the stability and convergence of the scheme. Graphically the numerical solution of the test problem is carried out with the help of mathematical software Mathematica.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
158
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信