{"title":"基于边缘计算的配电网OPGW线路安全数据处理技术","authors":"Ying Zeng, Zhongmiao Kang, Zhan Shi","doi":"10.4108/eetsis.v10i3.2837","DOIUrl":null,"url":null,"abstract":"Promoted by information technology and scalable information systems, the network design and communication method of optical fiber composite overhead ground wire (OPGW) have been in great progress recently. As the overhead transmission line has strict requirements on the outer diameter and weight of OPGW, it is of vital importance to perform the physical-layer secure data processing for the distribution network OPGW line with edge computing. To this end, we examine a physical-layer secure distribution network OPGW with edge computing in this article, where there exists one transmitter S, one receiver D, one authorized legitimate monitor LM, and an interfering node I. To better analyze the system performance, we firstly give the definition of the system outage probability, based on the secure data rate. Then, we evaluate the system performance for the distribution network OPGW, by deriving analytical outage probability of secure data processing, to facilitate the system performance evaluation of secure data processing in the entire SNR regime. Finally, we demonstrate some simulation results to validate the analytical results on the physical-layer secure distribution network OPGW line with edge computing.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Secure Data Processing Technology of Distribution Network OPGW Line with Edge Computing\",\"authors\":\"Ying Zeng, Zhongmiao Kang, Zhan Shi\",\"doi\":\"10.4108/eetsis.v10i3.2837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Promoted by information technology and scalable information systems, the network design and communication method of optical fiber composite overhead ground wire (OPGW) have been in great progress recently. As the overhead transmission line has strict requirements on the outer diameter and weight of OPGW, it is of vital importance to perform the physical-layer secure data processing for the distribution network OPGW line with edge computing. To this end, we examine a physical-layer secure distribution network OPGW with edge computing in this article, where there exists one transmitter S, one receiver D, one authorized legitimate monitor LM, and an interfering node I. To better analyze the system performance, we firstly give the definition of the system outage probability, based on the secure data rate. Then, we evaluate the system performance for the distribution network OPGW, by deriving analytical outage probability of secure data processing, to facilitate the system performance evaluation of secure data processing in the entire SNR regime. Finally, we demonstrate some simulation results to validate the analytical results on the physical-layer secure distribution network OPGW line with edge computing.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetsis.v10i3.2837\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.v10i3.2837","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Secure Data Processing Technology of Distribution Network OPGW Line with Edge Computing
Promoted by information technology and scalable information systems, the network design and communication method of optical fiber composite overhead ground wire (OPGW) have been in great progress recently. As the overhead transmission line has strict requirements on the outer diameter and weight of OPGW, it is of vital importance to perform the physical-layer secure data processing for the distribution network OPGW line with edge computing. To this end, we examine a physical-layer secure distribution network OPGW with edge computing in this article, where there exists one transmitter S, one receiver D, one authorized legitimate monitor LM, and an interfering node I. To better analyze the system performance, we firstly give the definition of the system outage probability, based on the secure data rate. Then, we evaluate the system performance for the distribution network OPGW, by deriving analytical outage probability of secure data processing, to facilitate the system performance evaluation of secure data processing in the entire SNR regime. Finally, we demonstrate some simulation results to validate the analytical results on the physical-layer secure distribution network OPGW line with edge computing.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.