{"title":"组合交互测试中的优化驱动约束处理","authors":"P. Ramgouda, V. Chandraprakash","doi":"10.4018/ijossp.2019070102","DOIUrl":null,"url":null,"abstract":"The combinatorial strategy is useful in the reduction of the number of input parameters into a compact set of a system based on the combinations of the parameters. This strategy can be used in testing the behaviour that takes place when the events are allowed to be executed in an appropriate order. Basically, in the software systems, for the highly configurable system, the input configurations are based on the constraints, and the construction of this idea undergoes various kinds of difficulties. The proposed Jaya-Bat optimization algorithm is developed with the combinatorial interaction test cases in an effective manner in the presence of the constraints. The proposed Jaya-Bat based optimization algorithm is the integration of the Jaya optimization algorithm (JOA) and the Bat optimization algorithm (BA). The experimentation is carried out in terms of average size and the average time to prove the effectiveness of the proposed algorithm. From the results, it is clear that the proposed algorithm is capable of selecting the test cases optimally with better performance.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"46 3 1","pages":"19-37"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization Driven Constraints Handling in Combinatorial Interaction Testing\",\"authors\":\"P. Ramgouda, V. Chandraprakash\",\"doi\":\"10.4018/ijossp.2019070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combinatorial strategy is useful in the reduction of the number of input parameters into a compact set of a system based on the combinations of the parameters. This strategy can be used in testing the behaviour that takes place when the events are allowed to be executed in an appropriate order. Basically, in the software systems, for the highly configurable system, the input configurations are based on the constraints, and the construction of this idea undergoes various kinds of difficulties. The proposed Jaya-Bat optimization algorithm is developed with the combinatorial interaction test cases in an effective manner in the presence of the constraints. The proposed Jaya-Bat based optimization algorithm is the integration of the Jaya optimization algorithm (JOA) and the Bat optimization algorithm (BA). The experimentation is carried out in terms of average size and the average time to prove the effectiveness of the proposed algorithm. From the results, it is clear that the proposed algorithm is capable of selecting the test cases optimally with better performance.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"46 3 1\",\"pages\":\"19-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijossp.2019070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.2019070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Optimization Driven Constraints Handling in Combinatorial Interaction Testing
The combinatorial strategy is useful in the reduction of the number of input parameters into a compact set of a system based on the combinations of the parameters. This strategy can be used in testing the behaviour that takes place when the events are allowed to be executed in an appropriate order. Basically, in the software systems, for the highly configurable system, the input configurations are based on the constraints, and the construction of this idea undergoes various kinds of difficulties. The proposed Jaya-Bat optimization algorithm is developed with the combinatorial interaction test cases in an effective manner in the presence of the constraints. The proposed Jaya-Bat based optimization algorithm is the integration of the Jaya optimization algorithm (JOA) and the Bat optimization algorithm (BA). The experimentation is carried out in terms of average size and the average time to prove the effectiveness of the proposed algorithm. From the results, it is clear that the proposed algorithm is capable of selecting the test cases optimally with better performance.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.