跨尺度注意引导多实例学习在克罗恩病病理图像诊断中的应用

Ruining Deng, C. Cui, L. W. Remedios, S. Bao, R. M. Womick, S. Chiron, Jia Li, J. T. Roland, K. Lau, Qi Liu, K. Wilson, Yao Wang, Lori A. Coburn, B. Landman, Yuankai Huo
{"title":"跨尺度注意引导多实例学习在克罗恩病病理图像诊断中的应用","authors":"Ruining Deng, C. Cui, L. W. Remedios, S. Bao, R. M. Womick, S. Chiron, Jia Li, J. T. Roland, K. Lau, Qi Liu, K. Wilson, Yao Wang, Lori A. Coburn, B. Landman, Yuankai Huo","doi":"10.48550/arXiv.2208.07322","DOIUrl":null,"url":null,"abstract":"Multi-instance learning (MIL) is widely used in the computer-aided interpretation of pathological Whole Slide Images (WSIs) to solve the lack of pixel-wise or patch-wise annotations. Often, this approach directly applies \"natural image driven\" MIL algorithms which overlook the multi-scale (i.e. pyramidal) nature of WSIs. Off-the-shelf MIL algorithms are typically deployed on a single-scale of WSIs (e.g., 20× magnification), while human pathologists usually aggregate the global and local patterns in a multi-scale manner (e.g., by zooming in and out between different magnifications). In this study, we propose a novel cross-scale attention mechanism to explicitly aggregate inter-scale interactions into a single MIL network for Crohn's Disease (CD), which is a form of inflammatory bowel disease. The contribution of this paper is two-fold: (1) a cross-scale attention mechanism is proposed to aggregate features from different resolutions with multi-scale interaction; and (2) differential multi-scale attention visualizations are generated to localize explainable lesion patterns. By training ~250,000 H&E-stained Ascending Colon (AC) patches from 20 CD patient and 30 healthy control samples at different scales, our approach achieved a superior Area under the Curve (AUC) score of 0.8924 compared with baseline models. The official implementation is publicly available at https://github.com/hrlblab/CS-MIL.","PeriodicalId":74231,"journal":{"name":"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cross-scale Attention Guided Multi-instance Learning for Crohn's Disease Diagnosis with Pathological Images\",\"authors\":\"Ruining Deng, C. Cui, L. W. Remedios, S. Bao, R. M. Womick, S. Chiron, Jia Li, J. T. Roland, K. Lau, Qi Liu, K. Wilson, Yao Wang, Lori A. Coburn, B. Landman, Yuankai Huo\",\"doi\":\"10.48550/arXiv.2208.07322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-instance learning (MIL) is widely used in the computer-aided interpretation of pathological Whole Slide Images (WSIs) to solve the lack of pixel-wise or patch-wise annotations. Often, this approach directly applies \\\"natural image driven\\\" MIL algorithms which overlook the multi-scale (i.e. pyramidal) nature of WSIs. Off-the-shelf MIL algorithms are typically deployed on a single-scale of WSIs (e.g., 20× magnification), while human pathologists usually aggregate the global and local patterns in a multi-scale manner (e.g., by zooming in and out between different magnifications). In this study, we propose a novel cross-scale attention mechanism to explicitly aggregate inter-scale interactions into a single MIL network for Crohn's Disease (CD), which is a form of inflammatory bowel disease. The contribution of this paper is two-fold: (1) a cross-scale attention mechanism is proposed to aggregate features from different resolutions with multi-scale interaction; and (2) differential multi-scale attention visualizations are generated to localize explainable lesion patterns. By training ~250,000 H&E-stained Ascending Colon (AC) patches from 20 CD patient and 30 healthy control samples at different scales, our approach achieved a superior Area under the Curve (AUC) score of 0.8924 compared with baseline models. The official implementation is publicly available at https://github.com/hrlblab/CS-MIL.\",\"PeriodicalId\":74231,\"journal\":{\"name\":\"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.07322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.07322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多实例学习(MIL)被广泛应用于病理全幻灯片图像(wsi)的计算机辅助解释中,以解决缺乏逐像素或逐块注释的问题。通常,这种方法直接应用“自然图像驱动”MIL算法,忽略了wsi的多尺度(即金字塔)性质。现成的MIL算法通常部署在单一尺度的wsi上(例如,20倍的放大倍率),而人类病理学家通常以多尺度的方式(例如,通过在不同的放大倍率之间放大和缩小)汇总全局和局部模式。在这项研究中,我们提出了一种新的跨尺度注意机制,明确地将克罗恩病(CD)的跨尺度相互作用聚集到一个单一的MIL网络中。本文的贡献有两个方面:(1)提出了一种跨尺度的注意机制,通过多尺度的相互作用来聚合不同分辨率的特征;(2)生成差异化多尺度注意可视化,以定位可解释的病变模式。通过对来自20例CD患者和30例健康对照样本的25万个h&e染色升结肠(AC)贴片进行不同尺度的训练,我们的方法获得了比基线模型更高的曲线下面积(AUC)得分0.8924。官方实现可以在https://github.com/hrlblab/CS-MIL上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-scale Attention Guided Multi-instance Learning for Crohn's Disease Diagnosis with Pathological Images
Multi-instance learning (MIL) is widely used in the computer-aided interpretation of pathological Whole Slide Images (WSIs) to solve the lack of pixel-wise or patch-wise annotations. Often, this approach directly applies "natural image driven" MIL algorithms which overlook the multi-scale (i.e. pyramidal) nature of WSIs. Off-the-shelf MIL algorithms are typically deployed on a single-scale of WSIs (e.g., 20× magnification), while human pathologists usually aggregate the global and local patterns in a multi-scale manner (e.g., by zooming in and out between different magnifications). In this study, we propose a novel cross-scale attention mechanism to explicitly aggregate inter-scale interactions into a single MIL network for Crohn's Disease (CD), which is a form of inflammatory bowel disease. The contribution of this paper is two-fold: (1) a cross-scale attention mechanism is proposed to aggregate features from different resolutions with multi-scale interaction; and (2) differential multi-scale attention visualizations are generated to localize explainable lesion patterns. By training ~250,000 H&E-stained Ascending Colon (AC) patches from 20 CD patient and 30 healthy control samples at different scales, our approach achieved a superior Area under the Curve (AUC) score of 0.8924 compared with baseline models. The official implementation is publicly available at https://github.com/hrlblab/CS-MIL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信