弱多孔介质中具有卷积的均匀化问题的可解性

IF 0.1
G. Sandrakov, A. Hulianytskyi
{"title":"弱多孔介质中具有卷积的均匀化问题的可解性","authors":"G. Sandrakov, A. Hulianytskyi","doi":"10.17721/2706-9699.2020.2.04","DOIUrl":null,"url":null,"abstract":"Initial boundary value problems for nonstationary equations of diffusion and filtration in weakly porous media are considered. Assertions about the solvability of such problems and the corresponding homogenized problems with convolutions are given. These statements are proved for general initial data and inhomogeneous initial conditions and are generalizations of classical results on the solvability of initial-boundary value problems for the heat equation. The proofs use the methods of a priori estimates and the well-known Agranovich–Vishik method, developed to study parabolic problems of general type.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"61 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SOLVABILITY OF HOMOGENIZED PROBLEMS WITH CONVOLUTIONS FOR WEAKLY POROUS MEDIA\",\"authors\":\"G. Sandrakov, A. Hulianytskyi\",\"doi\":\"10.17721/2706-9699.2020.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Initial boundary value problems for nonstationary equations of diffusion and filtration in weakly porous media are considered. Assertions about the solvability of such problems and the corresponding homogenized problems with convolutions are given. These statements are proved for general initial data and inhomogeneous initial conditions and are generalizations of classical results on the solvability of initial-boundary value problems for the heat equation. The proofs use the methods of a priori estimates and the well-known Agranovich–Vishik method, developed to study parabolic problems of general type.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2020.2.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2020.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了弱多孔介质中扩散和过滤的非平稳方程的初边值问题。给出了这类问题的可解性以及相应的带卷积的齐次化问题的断言。这些表述在一般初始数据和非齐次初始条件下得到了证明,是热方程初边值问题可解性的经典结果的推广。证明使用了先验估计方法和著名的Agranovich-Vishik方法,该方法用于研究一般类型的抛物问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOLVABILITY OF HOMOGENIZED PROBLEMS WITH CONVOLUTIONS FOR WEAKLY POROUS MEDIA
Initial boundary value problems for nonstationary equations of diffusion and filtration in weakly porous media are considered. Assertions about the solvability of such problems and the corresponding homogenized problems with convolutions are given. These statements are proved for general initial data and inhomogeneous initial conditions and are generalizations of classical results on the solvability of initial-boundary value problems for the heat equation. The proofs use the methods of a priori estimates and the well-known Agranovich–Vishik method, developed to study parabolic problems of general type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信