用于通信高效联邦学习的量化压缩感知

Yong-Nam Oh, N. Lee, Yo-Seb Jeon
{"title":"用于通信高效联邦学习的量化压缩感知","authors":"Yong-Nam Oh, N. Lee, Yo-Seb Jeon","doi":"10.1109/GCWkshps52748.2021.9682076","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a decentralized artificial intelligence technique for training a global model on a parameter server (PS) through collaboration with wireless devices, each with its own local training data set. In this paper, we present a communication-efficient FL framework which consists of gradient compression and reconstruction strategies based on quantized compressed sensing (QCS). The key idea of the gradient compression strategy is to compress-and-quantize a local gradient vector computed at each device after sparsifying this vector in a block wise fashion. Our gradient compression strategy can make communication overhead less than one bit per gradient entry. For accurate reconstruction of the local gradient from the compressed signals at the PS, we employ a expectation-maximization generalized-approximate-message-passing algorithm. The algorithm iteratively computes an approximate minimum mean square error solution of the local gradient, while learning the unknown model parameters of the Bernoulli Gaussian-mixture prior. Using the MNIST data set, we demonstrate that the presented FL framework can achieve almost identical classification performance with the case that performs no compression, while achieving a significant reduction of communication overhead.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"42 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantized Compressed Sensing for Communication-Efficient Federated Learning\",\"authors\":\"Yong-Nam Oh, N. Lee, Yo-Seb Jeon\",\"doi\":\"10.1109/GCWkshps52748.2021.9682076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) is a decentralized artificial intelligence technique for training a global model on a parameter server (PS) through collaboration with wireless devices, each with its own local training data set. In this paper, we present a communication-efficient FL framework which consists of gradient compression and reconstruction strategies based on quantized compressed sensing (QCS). The key idea of the gradient compression strategy is to compress-and-quantize a local gradient vector computed at each device after sparsifying this vector in a block wise fashion. Our gradient compression strategy can make communication overhead less than one bit per gradient entry. For accurate reconstruction of the local gradient from the compressed signals at the PS, we employ a expectation-maximization generalized-approximate-message-passing algorithm. The algorithm iteratively computes an approximate minimum mean square error solution of the local gradient, while learning the unknown model parameters of the Bernoulli Gaussian-mixture prior. Using the MNIST data set, we demonstrate that the presented FL framework can achieve almost identical classification performance with the case that performs no compression, while achieving a significant reduction of communication overhead.\",\"PeriodicalId\":6802,\"journal\":{\"name\":\"2021 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"42 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCWkshps52748.2021.9682076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9682076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

联邦学习(FL)是一种分散的人工智能技术,通过与无线设备的协作,在参数服务器(PS)上训练全局模型,每个无线设备都有自己的本地训练数据集。本文提出了一种基于量化压缩感知(QCS)的梯度压缩和重构策略的高效通信FL框架。梯度压缩策略的关键思想是压缩并量化在每个设备上计算的局部梯度向量,然后以块方式对该向量进行稀疏化。我们的梯度压缩策略可以使每个梯度入口的通信开销小于1位。为了从压缩信号中精确地重建局部梯度,我们采用了期望最大化广义近似消息传递算法。该算法迭代计算局部梯度的近似最小均方误差解,同时学习未知的伯努利-高斯混合先验模型参数。使用MNIST数据集,我们证明了所提出的FL框架可以在不执行压缩的情况下实现几乎相同的分类性能,同时显著降低了通信开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantized Compressed Sensing for Communication-Efficient Federated Learning
Federated learning (FL) is a decentralized artificial intelligence technique for training a global model on a parameter server (PS) through collaboration with wireless devices, each with its own local training data set. In this paper, we present a communication-efficient FL framework which consists of gradient compression and reconstruction strategies based on quantized compressed sensing (QCS). The key idea of the gradient compression strategy is to compress-and-quantize a local gradient vector computed at each device after sparsifying this vector in a block wise fashion. Our gradient compression strategy can make communication overhead less than one bit per gradient entry. For accurate reconstruction of the local gradient from the compressed signals at the PS, we employ a expectation-maximization generalized-approximate-message-passing algorithm. The algorithm iteratively computes an approximate minimum mean square error solution of the local gradient, while learning the unknown model parameters of the Bernoulli Gaussian-mixture prior. Using the MNIST data set, we demonstrate that the presented FL framework can achieve almost identical classification performance with the case that performs no compression, while achieving a significant reduction of communication overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信