对称设计与交织钩针

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
D. Wildstrom
{"title":"对称设计与交织钩针","authors":"D. Wildstrom","doi":"10.1080/17513472.2023.2194479","DOIUrl":null,"url":null,"abstract":"Two forms of symmetry which plane patterns can possess are the traditional wallpaper symmetries and the counterchange symmetries enumerated by H.J. Woods. Intermeshed crochet is a technique which may possess not only plane symmetries, but symmetries relating the back of the work to the front of the work. We explore how each of these new symmetries are realizable, in what combinations they can be realized within a single work, and how many ways each symmetry can be realized. GRAPHICAL ABSTRACT","PeriodicalId":42612,"journal":{"name":"Journal of Mathematics and the Arts","volume":"14 1","pages":"140 - 155"},"PeriodicalIF":0.3000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetrical designs with intermeshed crochet\",\"authors\":\"D. Wildstrom\",\"doi\":\"10.1080/17513472.2023.2194479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two forms of symmetry which plane patterns can possess are the traditional wallpaper symmetries and the counterchange symmetries enumerated by H.J. Woods. Intermeshed crochet is a technique which may possess not only plane symmetries, but symmetries relating the back of the work to the front of the work. We explore how each of these new symmetries are realizable, in what combinations they can be realized within a single work, and how many ways each symmetry can be realized. GRAPHICAL ABSTRACT\",\"PeriodicalId\":42612,\"journal\":{\"name\":\"Journal of Mathematics and the Arts\",\"volume\":\"14 1\",\"pages\":\"140 - 155\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and the Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17513472.2023.2194479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and the Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17513472.2023.2194479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

平面图案可以具有的两种对称形式是传统的墙纸对称和H.J.伍兹列举的反向对称。交织钩针是一种技术,它可能不仅具有平面对称,但对称有关的背面工作的前部工作。我们将探索每一种新的对称性是如何实现的,它们可以在单一作品中以何种组合实现,以及每种对称性可以实现的方式有多少种。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetrical designs with intermeshed crochet
Two forms of symmetry which plane patterns can possess are the traditional wallpaper symmetries and the counterchange symmetries enumerated by H.J. Woods. Intermeshed crochet is a technique which may possess not only plane symmetries, but symmetries relating the back of the work to the front of the work. We explore how each of these new symmetries are realizable, in what combinations they can be realized within a single work, and how many ways each symmetry can be realized. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and the Arts
Journal of Mathematics and the Arts MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
0.50
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信